Jeu. de Taquin and Diamond Cone for so(2n+1, C)

被引:0
|
作者
Agrebaoui, Boujemaa [1 ]
Arnal, Didier [2 ]
Ben Hassine, Abdelkader [1 ,3 ]
机构
[1] Univ Sfax, Fac Sci, Dept Math, Sfax 3000, Tunisia
[2] Univ Bourgogne Franche Comte, Inst Math Bourgogne, UFR Sci & Tech, F-21078 Dijon, France
[3] Univ Bisha, Fac Sci & Arts Belqarn, Dept Math, Sabt Al Alaya 61985, Saudi Arabia
关键词
Shape algebra; semistandard Young tableau; quasistandard Young tableau; jeu de taquin; TABLEAUX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The diamond cone is a combinatorial description for a basis of a natural indecomposable n-module, where n is the nilpotent factor of a complex semisimple Lie algebra g. After N. J. Wildberger who introduced this notion, this description was achieved for g = sl(n) , the rank 2 semisimple Lie algebras and g = sp (2n). In this work, we generalize these constructions to the Lie algebra g = so(2n + 1). The orthogonal semistandard Young tableaux were defined by M. Kashiwara and T. Nakashima, they index a basis for the shape algebra of so(2n + 1). Defining the notion of orthogonal quasistandard Young tableaux, we prove that these tableaux describe a basis for a quotient of the shape algebra, the reduced shape algebra of so(2n + 1).
引用
收藏
页码:277 / 303
页数:27
相关论文
共 50 条