A note on flat nonholonomic Riemannian structures on three-dimensional Lie groups

被引:3
|
作者
Barrett, Dennis, I [1 ]
Remsing, Claudiu C. [1 ]
机构
[1] Rhodes Univ, Dept Math, ZA-6140 Grahamstown, South Africa
基金
新加坡国家研究基金会;
关键词
Nonholonomic Riemannian structure; Nonholonomic connection; Lie group;
D O I
10.1007/s13366-018-0421-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider flat nonholonomic Riemannian manifolds, i.e., those whose associated parallel transport (induced by the nonholonomic connection) is path-independent. We first characterize flatness for structures on three-dimensional manifolds, and hence classify the flat left-invariant structures on simply connected Lie groups.
引用
收藏
页码:419 / 436
页数:18
相关论文
共 50 条
  • [21] Magnetic trajectories in three-dimensional Lie groups
    Turhan, Tunahan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2747 - 2758
  • [22] Three-Dimensional Nonunimodular Lie Groups with a Riemannian Metric of an Invariant Ricci Soliton and a Semisymmetric Metric Connection
    Klepikov, P. N.
    Rodionov, E. D.
    Khromova, O. P.
    RUSSIAN MATHEMATICS, 2022, 66 (05) : 65 - 69
  • [23] Three-Dimensional Nonunimodular Lie Groups with a Riemannian Metric of an Invariant Ricci Soliton and a Semisymmetric Metric Connection
    P. N. Klepikov
    E. D. Rodionov
    O. P. Khromova
    Russian Mathematics, 2022, 66 : 65 - 69
  • [24] Jacobi structures on real two- and three-dimensional Lie groups and their Jacobi-Lie systems
    Amirzadeh-Fard, H.
    Haghighatdoost, G.
    Kheradmandynia, P.
    Rezaei-Aghdam, A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 205 (02) : 1393 - 1410
  • [25] On local isometric embeddings of three-dimensional Lie groups
    Yoshio Agaoka
    Takahiro Hashinaga
    Geometriae Dedicata, 2020, 205 : 191 - 219
  • [26] Sectional and Ricci Curvature for Three-Dimensional Lie Groups
    Thompson, Gerard
    Bhattarai, Giriraj
    JOURNAL OF MATHEMATICS, 2016, 2016
  • [27] PARALLEL SURFACES IN THREE-DIMENSIONAL LORENTZIAN LIE GROUPS
    Calvaruso, Giovanni
    Van der Veken, Joeri
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (01): : 223 - 250
  • [28] Generalised killing spinors on three-dimensional Lie groups
    Artacho, Diego
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [29] Invariant Ricci collineations on three-dimensional Lie groups
    Calvino-Louzao, E.
    Seoane-Bascoy, J.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 59 - 71
  • [30] On local isometric embeddings of three-dimensional Lie groups
    Agaoka, Yoshio
    Hashinaga, Takahiro
    GEOMETRIAE DEDICATA, 2020, 205 (01) : 191 - 219