A note on flat nonholonomic Riemannian structures on three-dimensional Lie groups

被引:3
|
作者
Barrett, Dennis, I [1 ]
Remsing, Claudiu C. [1 ]
机构
[1] Rhodes Univ, Dept Math, ZA-6140 Grahamstown, South Africa
基金
新加坡国家研究基金会;
关键词
Nonholonomic Riemannian structure; Nonholonomic connection; Lie group;
D O I
10.1007/s13366-018-0421-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider flat nonholonomic Riemannian manifolds, i.e., those whose associated parallel transport (induced by the nonholonomic connection) is path-independent. We first characterize flatness for structures on three-dimensional manifolds, and hence classify the flat left-invariant structures on simply connected Lie groups.
引用
收藏
页码:419 / 436
页数:18
相关论文
共 50 条
  • [1] A note on flat nonholonomic Riemannian structures on three-dimensional Lie groups
    Dennis I. Barrett
    Claudiu C. Remsing
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 419 - 436
  • [2] INVARIANT NONHOLONOMIC RIEMANNIAN STRUCTURES ON THREE-DIMENSIONAL LIE GROUPS
    Barrett, Dennis I.
    Biggs, Rory
    Remsing, Claudiu C.
    Rossi, Olga
    JOURNAL OF GEOMETRIC MECHANICS, 2016, 8 (02): : 139 - 167
  • [3] Half-flat structures on products of three-dimensional Lie groups
    Schulte-Hengesbach, Fabian
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (11) : 1726 - 1740
  • [4] Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups
    Mashtakov, A. P.
    Sachkov, Yu. L.
    DIFFERENTIAL EQUATIONS, 2015, 51 (11) : 1476 - 1483
  • [5] Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups
    A. P. Mashtakov
    Yu. L. Sachkov
    Differential Equations, 2015, 51 : 1476 - 1483
  • [6] Isometry groups of three-dimensional Lie groups
    Cosgaya, Ana
    Reggiani, Silvio
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (04) : 831 - 845
  • [7] Isometry groups of three-dimensional Lie groups
    Ana Cosgaya
    Silvio Reggiani
    Annals of Global Analysis and Geometry, 2022, 61 : 831 - 845
  • [8] On harmonic tensors on three-dimensional Lie groups with left-invariant Riemannian metric
    O. P. Gladunova
    E. D. Rodionov
    V. V. Slavskii
    Doklady Mathematics, 2008, 77 : 306 - 309
  • [9] Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure
    Karmanova, M. B.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) : 1080 - 1092
  • [10] Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure
    M. B. Karmanova
    Siberian Mathematical Journal, 2015, 56 : 1080 - 1092