On the number of generators of an algebra

被引:10
|
作者
First, Uriya A. [1 ]
Reichstein, Zinovy [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.crma.2016.11.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical theorem of Forster asserts that a finite module Mof rank <= n over a Noetherian ring of Krull dimension d can be generated by n + d elements. We prove a generalization of this result, with "module" replaced by "algebra". Here we allow arbitrary finite algebras, not necessarily unital, commutative or associative. Forster's theorem can be recovered as a special case by viewing a module as an algebra where the product of any two elements is 0. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 50 条