On Three-Parameter Grubbs' Copula-Function

被引:2
|
作者
Shiryaeva, L. K. [1 ]
机构
[1] Samara State Econ Univ, Ul Sovetskoi Armii 141, Samara 443090, Russia
关键词
one-sided Grubbs' statistics; standardized minimum and maximum; outlier; normal distribution; joint distribution function of standardized maximum and minimum; copula; Frechet-Hoeffding lower bound;
D O I
10.3103/S1066369X19030058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study one-sided Grubbs' statistics for a normal sample, i.e., extreme studentized deviations of observations from the mean, computed from a normally distributed sample. We consider the case when the sample has an abnormal observation (outlier) with unknown number. The outlier differs from other observations in mean value and dispersion. We investigate the properties of the joint distribution of Grubbs' statistics. We prove the existence of domain in which the joint distribution function of Grubbs' statistics is a linear function of their marginal distribution functions. We construct a three-parameter Grubbs' copula from the joint distribution of Grubbs' statistics. We prove the existence of a domain in which Grubbs' copula coincides with the Frechet-Hoeffding lower bound. We investigate the influence of the copulas parameters on the shape of this domain.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 50 条
  • [41] Best constant in a three-parameter Poincaré inequality
    Gerasimov I.V.
    Nazarov A.I.
    Journal of Mathematical Sciences, 2011, 179 (1) : 80 - 99
  • [42] Three-parameter AVO crossplotting in anisotropic media
    Chen, H
    Castagna, JP
    Brown, RL
    Ramos, ACB
    GEOPHYSICS, 2001, 66 (05) : 1359 - 1363
  • [43] Analyticity and causality of the three-parameter rheological models
    Nicos Makris
    Georgios Kampas
    Rheologica Acta, 2009, 48 : 815 - 825
  • [44] A New Flexible Three-Parameter Compound Chen Distribution: Properties, Copula and Modeling Relief Times and Minimum Flow Data
    Ali, M. Masoom
    Ibrahim, Mohamed
    Yousof, Haitham M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (SUPPL 1) : 139 - 160
  • [45] THREE-PARAMETER VISCOELASTICITY MODELS FOR BALLISTIC FABRICS
    David, N., V
    Gao, X. -L
    Zheng, J. Q.
    Masters, K.
    IMECE 2008: MECHANICS OF SOLIDS, STRUCTURES AND FLUIDS, VOL 12, 2009, : 459 - 466
  • [46] A three-parameter generalized von Mises distribution
    Sungsu Kim
    Ashis SenGupta
    Statistical Papers, 2013, 54 : 685 - 693
  • [47] Polypyrrole film studied by three-parameter ellipsometry
    Kim, D
    Lee, D
    Paik, WK
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 1996, 17 (08) : 707 - 712
  • [48] Differential calculus on a three-parameter oscillator algebra
    IracAstaud, M
    REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (08) : 1083 - 1090
  • [49] Shift Control Strategy of Three-parameter for AMT
    Zhao, Zhen
    Chen, Yong
    Cai, Yuxi
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 2732 - +
  • [50] Spectrum decomposition based on three-parameter wavelet
    Zhu Z.
    Gao J.
    Jiang X.
    Sun W.
    Xue D.
    Wang Q.
    2018, Science Press (53): : 1299 - 1306