A simple way of making a Hamiltonian system into a bi-Hamiltonian one

被引:24
|
作者
Sergyeyev, A [1 ]
机构
[1] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel
关键词
compatible Poisson structures; Hamiltonian operators; bi-Hamiltonian systems; integrability; Schouten bracket; master symmetry; Lichnerowicz-Poisson cohomology; hydrodynamic type systems;
D O I
10.1023/B:ACAP.0000035597.06308.8a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Poisson structure ( or, equivalently, a Hamiltonian operator) P, we show that its Lie derivative L-tau (P) along a vector field tau defines another Poisson structure, which is automatically compatible with P, if and only if [L-tau(2) ( P), P] = 0, where [., .] is the Schouten bracket. This result yields a new local description for the set of all Poisson structures compatible with a given Poisson structure P of locally constant rank such that dim ker P less than or equal to 1 and leads to a remarkably simple construction of bi-Hamiltonian dynamical systems. A new description for pairs of compatible local Hamiltonian operators of Dubrovin-Novikov type is also presented.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 50 条
  • [21] On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian
    Morosi, C
    Tondo, G
    PHYSICS LETTERS A, 1998, 247 (1-2) : 59 - 64
  • [22] Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
    Tondo, G
    Morosi, C
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 255 - 266
  • [23] On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian
    Morosi, C.
    Tondo, G.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 247 (1-2): : 59 - 64
  • [24] BI-HAMILTONIAN SYSTEMS AND MASLOV INDEXES
    SCHERER, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) : 3746 - 3756
  • [25] The bi-Hamiltonian structure of the Lagrange top
    Medan, C
    PHYSICS LETTERS A, 1996, 215 (3-4) : 176 - 180
  • [26] Alternative structures and bi-Hamiltonian systems
    Marmo, G
    Morandi, G
    Simoni, A
    Ventriglia, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (40): : 8393 - 8406
  • [27] Boussinesq hierarchy and bi-Hamiltonian geometry
    Ortenzi, Giovanni
    Pedroni, Marco
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [28] On the Bi-Hamiltonian Geometry of WDVV Equations
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (08) : 1135 - 1163
  • [29] A Bi-Hamiltonian Supersymmetric Geodesic Equation
    Jonatan Lenells
    Letters in Mathematical Physics, 2008, 85 : 55 - 63
  • [30] Bi-Hamiltonian formalism: A constructive approach
    Smirnov, RG
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (04) : 333 - 347