A simple way of making a Hamiltonian system into a bi-Hamiltonian one

被引:24
|
作者
Sergyeyev, A [1 ]
机构
[1] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel
关键词
compatible Poisson structures; Hamiltonian operators; bi-Hamiltonian systems; integrability; Schouten bracket; master symmetry; Lichnerowicz-Poisson cohomology; hydrodynamic type systems;
D O I
10.1023/B:ACAP.0000035597.06308.8a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Poisson structure ( or, equivalently, a Hamiltonian operator) P, we show that its Lie derivative L-tau (P) along a vector field tau defines another Poisson structure, which is automatically compatible with P, if and only if [L-tau(2) ( P), P] = 0, where [., .] is the Schouten bracket. This result yields a new local description for the set of all Poisson structures compatible with a given Poisson structure P of locally constant rank such that dim ker P less than or equal to 1 and leads to a remarkably simple construction of bi-Hamiltonian dynamical systems. A new description for pairs of compatible local Hamiltonian operators of Dubrovin-Novikov type is also presented.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 50 条