Effect of a magnetic field on polarisation of light in an optical fibre with a random distribution of linear birefringence

被引:4
|
作者
Konyshev, V. A. [1 ]
Lukinykh, S. N. [1 ]
Nanii, O. E. [1 ,2 ]
Novikov, A. G. [1 ]
Treshchikov, V. N. [1 ,3 ]
Ubaydullaev, R. R. [1 ]
机构
[1] T8 Ltd, Ul Krasnobogatyrskaya 44,Stroenie 1,Off 826, Moscow 107076, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[3] Russian Acad Sci, Fryazino Branch, Kotelnikov Inst Radio Engn & Elect, Pl Akad Vvedenskogo 1, Fryazino 141701, Moscow Region, Russia
关键词
Faraday effect; standard single-mode fibre; SSMF; beat length; correlation length; Jones matrix; polarisation state; Stokes vector; polarimeter; DECORRELATION;
D O I
10.1070/QEL16936
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A numerical model is proposed to describe the evolution of polarisation of a light wave propagating through a telecommunication fibre with random linear birefringence in a magnetic field. As a result of statistical processing of a set of numerical simulation results, a convenient phenomenological formula is obtained for the first time for the dependence of the average value of the polarisation rotation angle on the magnetic field, the fibre parameters and its length. It is found that the average value of the polarisation rotation angle in a long telecommunication fibre in the representation of the Stokes vectors linearly depends on the applied longitudinal magnetic field (as in the classical Faraday effect for an isotropic medium) but is proportional to the root of the fibre length. It is theoretically shown and experimentally confirmed that the polarisation rotation angle for an extended segment of a telecommunication fibre (50 km) is two orders of magnitude less than that for an isotropic fibre of the same length and material.
引用
收藏
页码:773 / 776
页数:4
相关论文
共 50 条
  • [41] Influence of the Polarization Mode Dispersion on Propagation of Ultrashort Optical Pulses in the Spun Light Guides with Very Weak Linear Birefringence and Random Inhomogeneities
    G. B. Malykin
    V. I. Pozdnyakova
    Radiophysics and Quantum Electronics, 2018, 61 : 296 - 304
  • [42] Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence
    Cheng, Linghao
    Han, Jianlei
    Jin, Long
    Guo, Zhenzhen
    Guan, Bai-Ou
    OPTICS EXPRESS, 2013, 21 (25): : 30156 - 30162
  • [43] Distribution of magnetic field of linear induction motor
    Sadauskas, T.
    Smilgevicius, A.
    Savickiene, Z.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2007, (04) : 63 - 66
  • [44] Use of a Sagnac interferometer for measurements of linear nonreciprocal birefringence in a transverse magnetic field
    Shabanov, DV
    Novikov, MA
    TECHNICAL PHYSICS LETTERS, 1997, 23 (10) : 748 - 749
  • [45] Use of a Sagnac interferometer for measurements of linear nonreciprocal birefringence in a transverse magnetic field
    D. V. Shabanov
    M. A. Novikov
    Technical Physics Letters, 1997, 23 : 748 - 749
  • [46] The separate detection of linear birefringence and faraday effect in optical current transformer
    School of Science, Harbin Engineering University, Harbin 150001, China
    Guangxue Xuebao, 2008, 1 (163-168):
  • [47] Effect of dispersion of linear birefringence upon the sensitivity of an optical current sensor
    Wang, ZP
    Li, QB
    Qi, Y
    Huang, ZJ
    Shi, JH
    OPTICS AND LASER TECHNOLOGY, 2004, 36 (07): : 587 - 590
  • [48] Influence of spin-orbit interaction, Zeeman effect and light polarisation on the electronic and optical properties of pseudo-elliptic quantum rings under magnetic field
    Bejan, D.
    Stan, C.
    PHILOSOPHICAL MAGAZINE, 2020, 100 (06) : 749 - 767
  • [49] Using polarimetric optical time-domain reflectometry to estimate linear birefringence suppression in spun fibre
    Ellison, JG
    Siddiqui, AS
    IEE PROCEEDINGS-OPTOELECTRONICS, 1999, 146 (03): : 137 - 141
  • [50] Effect of Induced linear birefringence on Faraday Current Sensor using Ultra low Birefringence Optical Fiber
    Sawale, B. A.
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL POWER AND ENERGY SYSTEMS (ICEPES), 2016, : 577 - 581