Spectral reflectance curves for multispectral imaging, combining different techniques and a neural network

被引:0
|
作者
Osorio-Gomez, C. A. [1 ]
Mejia-Ospino, E. [2 ]
Guerrero-Bermudez, J. E. [1 ]
机构
[1] Univ Ind Santander, Fac Ciencias, Escuela Fis, Grp Opt & Tratamiento Senales, Bucaramanga, Colombia
[2] Univ Ind Santander, Fac Ciencias, Escuela Quim, Lab Espect Atom Mol, Bucaramanga, Colombia
关键词
Artificia neural network; spectral reflectanc curves; multispectral imaging; curve fitting; RECONSTRUCTION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper. we present an alternative procedure for the digital reconstruction of spectral reflectanc Curves of oil painting on canvas using multispectral imaging. The technique is based on a combination of the results obtained by pseudo-inverse, principal component analysis and interpolation; these results are the input to a feed-forward back propagation neural network fittin the values of the curves to a target obtained using a spectrophotometer Shimadzu UV2401. Goodness-of-Fit Coefficien (GFC), absolute mean error (ABE) and spectral Root Mean Squared error (RMS) are the metrics used to evaluate the performance of the procedure proposed.
引用
收藏
页码:120 / 124
页数:5
相关论文
共 50 条
  • [41] Combining FFT and Spectral-Pooling for Efficient Convolution Neural Network Model
    Wang, Zelong
    Lan, Qiang
    Huang, Dafei
    Wen, Mei
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 : 203 - 206
  • [42] A Neural Network for Hyperspectral Image Denoising by Combining Spatial-Spectral Information
    Lian, Xiaoying
    Yin, Zhonghai
    Zhao, Siwei
    Li, Dandan
    Lv, Shuai
    Pang, Boyu
    Sun, Dexin
    REMOTE SENSING, 2023, 15 (21)
  • [43] Combining Nakagami imaging and convolutional neural network for breast lesion classification
    Byra, Micha
    Piotrzkowska-Wroblewska, Hanna
    Dobruch-Sobczak, Katarzyna
    Nowicki, Andrzej
    2017 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2017,
  • [44] Determination of spectral resolutions for multispectral detection of apple bruises using visible/near-infrared hyperspectral reflectance imaging
    Baek, Insuck
    Mo, Changyeun
    Eggleton, Charles
    Gadsden, S. Andrew
    Cho, Byoung-Kwan
    Qin, Jianwei
    Chan, Diane E.
    Kim, Moon S.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [45] A Bayesian optimal convolutional neural network approach for classification of coal and gangue with multispectral imaging
    Hu, Feng
    Zhou, Mengran
    Yan, Pengcheng
    Liang, Zhe
    Li, Mei
    OPTICS AND LASERS IN ENGINEERING, 2022, 156
  • [46] Multi-window spectral estimation based on neural network techniques
    Ma, Wei
    Wu, Mu-Qing
    Li, Guan-Nan
    Zhang, Ning
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2009, 24 (06): : 1154 - 1157
  • [47] Multispectral imaging techniques diagnosing plant diseases and insect pests using artificial neural networks
    National Laboratory of Colour Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    不详
    不详
    不详
    Guangxue Jishu, 2008, 5 (717-720):
  • [48] Artificial neural network approaches for fluorescence lifetime imaging techniques
    Wu, Gang
    Nowotny, Thomas
    Zhang, Yongliang
    Yu, Hong-Qi
    Li, David Day-Uei
    OPTICS LETTERS, 2016, 41 (11) : 2561 - 2564
  • [49] Online fuel tracking by combining principal component analysis and neural network techniques
    Xu, LJ
    Yan, Y
    Cornwell, S
    Riley, G
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005, 54 (04) : 1640 - 1645
  • [50] Artificial neural network with different learning parameters for crop classification using multispectral datasets
    Kumar, Pradeep
    Prasad, Rajendra
    Mishra, Varun Narayan
    Gupta, Dileep Kumar
    Choudhary, Arti
    Srivastava, Prashant K.
    2015 INTERNATIONAL CONFERENCE ON MICROWAVE, OPTICAL AND COMMUNICATION ENGINEERING (ICMOCE), 2015, : 204 - 207