A NEWTON-GRASSMANN METHOD FOR COMPUTING THE BEST MULTILINEAR RANK-(r1, r2, r3) APPROXIMATION OF A TENSOR

被引:84
|
作者
Elden, Lars [1 ]
Savas, Berkant [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
tensor; multilinear; rank; approximation; Grassmann manifold; Newton; COMPUTATIONS; ALGORITHMS;
D O I
10.1137/070688316
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a Newton method for computing the best rank-(r(1), r(2), r(3)) approximation of a given J x K x L tensor A. The problem is formulated as an approximation problem on a product of Grassmann manifolds. Incorporating the manifold structure into Newton's method ensures that all iterates generated by the algorithm are points on the Grassmann manifolds. We also introduce a consistent notation for matricizing a tensor, for contracted tensor products and some tensor-algebraic manipulations, which simplify the derivation of the Newton equations and enable straightforward algorithmic implementation. Experiments show a quadratic convergence rate for the Newton-Grassmann algorithm.
引用
收藏
页码:248 / 271
页数:24
相关论文
共 50 条
  • [1] The Best Rank- (R1, R2, R3) Approximation of Tensors by Means of a Geometric Newton Method
    Ishteva, Mariya
    De Lathauwer, Lieven
    Absil, P. -A.
    Van Huffel, Sabine
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 274 - +
  • [2] Delayed exponential fitting by best tensor rank- (R1, R2, R3) approximation
    Boyer, R
    De Lathauwer, L
    Abed-Meraim, K
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 269 - 272
  • [3] Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors
    Mariya Ishteva
    Lieven De Lathauwer
    P.-A. Absil
    Sabine Van Huffel
    [J]. Numerical Algorithms, 2009, 51 : 179 - 194
  • [4] First-order perturbation analysis of the best rank-(R1, R2, R3) approximation in multilinear algebra
    De Lathauwer, L
    [J]. JOURNAL OF CHEMOMETRICS, 2004, 18 (01) : 2 - 11
  • [5] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Lars Eldén
    Maryam Dehghan
    [J]. Numerical Algorithms, 2022, 91 : 1315 - 1347
  • [6] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Elden, Lars
    Dehghan, Maryam
    [J]. NUMERICAL ALGORITHMS, 2022, 91 (03) : 1315 - 1347
  • [7] Pattern recognition framework based on the best rank-(R1, R2, ... , RK) tensor approximation
    Cyganek, B.
    [J]. COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING IV, 2014, : 301 - 306
  • [8] Differential-geometric Newton method for the best rank-(R 1, R 2, R 3) approximation of tensors
    Ishteva, Mariya
    De Lathauwer, Lieven
    Absil, P. -A.
    Van Huffel, Sabine
    [J]. NUMERICAL ALGORITHMS, 2009, 51 (02) : 179 - 194
  • [9] On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1324 - 1342
  • [10] Dimensionality reduction in ICA and rank-(R1, R2, ..., RN) reduction in multilinear algebra
    De Lathauwer, L
    Vandewalle, J
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 295 - 302