Differential-geometric Newton method for the best rank-(R 1, R 2, R 3) approximation of tensors

被引:42
|
作者
Ishteva, Mariya [1 ]
De Lathauwer, Lieven [1 ,2 ]
Absil, P. -A. [3 ]
Van Huffel, Sabine [1 ]
机构
[1] Katholieke Univ Leuven, ESAT SCD, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Subfac Sci & Technol, B-8500 Kortrijk, Belgium
[3] Catholic Univ Louvain, Dept Engn Math, B-1348 Louvain, Belgium
关键词
Multilinear algebra; Higher-order tensor; Higher-order singular value decomposition; Rank-(R-1; R-2; R-3); reduction; Quotient manifold; Differential-geometric optimization; Newton's method; Tucker compression; HIGHER-ORDER TENSOR; INDEPENDENT COMPONENT ANALYSIS; CANONICAL DECOMPOSITION; RIEMANNIAN-MANIFOLDS; MULTILINEAR-ALGEBRA;
D O I
10.1007/s11075-008-9251-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An increasing number of applications are based on the manipulation of higher-order tensors. In this paper, we derive a differential-geometric Newton method for computing the best rank-(R (1), R (2), R (3)) approximation of a third-order tensor. The generalization to tensors of order higher than three is straightforward. We illustrate the fast quadratic convergence of the algorithm in a neighborhood of the solution and compare it with the known higher-order orthogonal iteration (De Lathauwer et al., SIAM J Matrix Anal Appl 21(4):1324-1342, 2000). This kind of algorithms are useful for many problems.
引用
收藏
页码:179 / 194
页数:16
相关论文
共 50 条
  • [1] Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors
    Mariya Ishteva
    Lieven De Lathauwer
    P.-A. Absil
    Sabine Van Huffel
    [J]. Numerical Algorithms, 2009, 51 : 179 - 194
  • [2] The Best Rank- (R1, R2, R3) Approximation of Tensors by Means of a Geometric Newton Method
    Ishteva, Mariya
    De Lathauwer, Lieven
    Absil, P. -A.
    Van Huffel, Sabine
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 274 - +
  • [3] A NEWTON-GRASSMANN METHOD FOR COMPUTING THE BEST MULTILINEAR RANK-(r1, r2, r3) APPROXIMATION OF A TENSOR
    Elden, Lars
    Savas, Berkant
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 248 - 271
  • [4] On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1324 - 1342
  • [5] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Lars Eldén
    Maryam Dehghan
    [J]. Numerical Algorithms, 2022, 91 : 1315 - 1347
  • [6] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Elden, Lars
    Dehghan, Maryam
    [J]. NUMERICAL ALGORITHMS, 2022, 91 (03) : 1315 - 1347
  • [7] Delayed exponential fitting by best tensor rank- (R1, R2, R3) approximation
    Boyer, R
    De Lathauwer, L
    Abed-Meraim, K
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 269 - 272
  • [8] First-order perturbation analysis of the best rank-(R1, R2, R3) approximation in multilinear algebra
    De Lathauwer, L
    [J]. JOURNAL OF CHEMOMETRICS, 2004, 18 (01) : 2 - 11
  • [9] Pattern recognition framework based on the best rank-(R1, R2, ... , RK) tensor approximation
    Cyganek, B.
    [J]. COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING IV, 2014, : 301 - 306
  • [10] Best rank-(R, R, R) super-symmetric tensor approximation -: a continuous-time approach
    Cambré, J
    De Lathauwer, L
    De Moor, B
    [J]. PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, : 242 - 246