APPROXIMATION BY WALSH-KACZMARZ-FEJER MEANS ON THE HARDY SPACE

被引:16
|
作者
Tephnadze, George [1 ,2 ]
机构
[1] Tbilisi State Univ, Fac Exact & Nat Sci, Dept Math, GE-0128 Tbilisi, Georgia
[2] Lulea Univ Technol, Dept Engn Sci & Math, SE-97187 Lulea, Sweden
基金
美国国家科学基金会;
关键词
Walsh-Kaczmarz system; Fejer means; martingale Hardy space; modulus of continuity; MAXIMAL OPERATORS; NORLUND MEANS; CESARO SUMMABILITY; FOURIER-SERIES; RESPECT; CONVERGENCE;
D O I
10.1016/S0252-9602(14)60106-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to find necessary and sufficient conditions for the convergence of Walsh-Kaczmarz-Fejer means in the terms of the modulus of continuity on the Hardy spaces H-p, when 0 < p <= 1/2.
引用
收藏
页码:1593 / 1602
页数:10
相关论文
共 50 条
  • [41] MAXIMAL OPERATORS OF T MEANS WITH RESPECT TO WALSH-KACZMARZ SYSTEM
    Gogolashvili, Nata
    Tephnadze, George
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (03): : 737 - 750
  • [42] ON THE MAXIMAL OPERATORS OF T MEANS WITH RESPECT TO WALSH-KACZMARZ SYSTEM
    Gogolashvili, Nata
    Tephnadze, George
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2021, 58 (01) : 119 - 135
  • [43] On the restricted summability of two-dimensional Walsh-Fejer means
    Nagy, Karoly
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 113 - 122
  • [44] CONVERGENCE IN MEASURE OF FEJER MEANS OF TWO PARAMETER CONJUGATE WALSH TRANSFORMS
    Goginava, Ushangi
    Said, Salem Ben
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (01): : 115 - 128
  • [45] ON THE MAXIMAL OPERATORS OF VILENKIN-FEJER MEANS ON HARDY SPACES
    Tephnadze, George
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01): : 301 - 312
  • [46] Approximation by Walsh-Norlund means
    Fridli, S.
    Manchanda, P.
    Siddiqi, A. H.
    ACTA SCIENTIARUM MATHEMATICARUM, 2008, 74 (3-4): : 593 - 608
  • [47] Approximation by Θ-Means of Walsh–Fourier Series
    I. Blahota
    K. Nagy
    Analysis Mathematica, 2018, 44 : 57 - 71
  • [48] Maximal operators of Fejer means of double Walsh-Fourier series
    Goginava, U.
    ACTA MATHEMATICA HUNGARICA, 2007, 115 (04) : 333 - 340
  • [49] Convergence of Fejer means of integrable functions with respect to weighted Walsh systems
    Gat, Gyorgy
    ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (3-4): : 549 - 560
  • [50] Approximation by Θ-Means of Walsh-Fourier Series in Dyadic Hardy Spaces and Dyadic Homogeneous Banach Spaces
    Blahota, I.
    Nagy, K.
    Salim, M.
    ANALYSIS MATHEMATICA, 2021, 47 (02) : 285 - 309