Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals

被引:3
|
作者
Omaba, M. E. [1 ]
机构
[1] Univ Hafr Al Batin, POB 1803, Hafar al Batin 31991, Saudi Arabia
关键词
Hermite-Hadamard inequalities; Mittag-Leffler function; generalized Katugampola fractional integral; convex and positive stochastic process;
D O I
10.15330/cmp.14.2.475-484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new generalization of the Katugampola generalized fractional integrals in terms of the Mittag-Leffler functions is proposed. Consequently, new generalizations of the Hermite-Hadamard in-equalities by this newly proposed fractional integral operator, for a positive convex stochastic pro-cess, are established. Other known results are easily deduced as particular cases of these inequali-ties. The obtained results also hold for any convex function. Key words and phrases: Hermite-Hadamard inequalities, Mittag-Leffler function, generalized Katugampola fractional integral, convex and positive stochastic process.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 50 条
  • [31] Generalized Hermite - Hadamard Type Integral Inequalities for Fractional Integrals
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    FILOMAT, 2016, 30 (05) : 1315 - 1326
  • [32] Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals
    M. Rostamian Delavar
    S. S. Dragomir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [33] Generalized Hermite-Hadamard type integral inequalities for s-convex functions via fractional integrals
    Sarikaya, Mehmet Zeki
    Ertugral, Fatma
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2014, 41 (02): : 226 - 233
  • [34] On some Hermite-Hadamard type inequalities for tgs-convex functions via generalized fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [35] New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral
    Mumcu, Ilker
    Set, Erhan
    Akdemir, Ahmet Ocak
    Jarad, Fahd
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (02)
  • [36] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [37] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR MULTIPLICATIVE FRACTIONAL INTEGRALS
    Budak, H.
    Ozcelik, K.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 91 - 99
  • [38] Generalization of Hermite-Hadamard Type Inequalities via Conformable Fractional Integrals
    Khan, Muhammad Adil
    Khurshid, Yousaf
    Du, Ting-Song
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [39] Hermite-Hadamard Type Inequalities for Superquadratic Functions via Fractional Integrals
    Li, Guangzhou
    Chen, Feixiang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [40] Hermite-Hadamard, Trapezoid and Midpoint Type Inequalities Involving Generalized Fractional Integrals for Convex Functions
    Kara, Hasan
    Erden, Samet
    Budak, Huseyin
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (02): : 85 - 107