Functional principal component analysis for longitudinal data with informative dropout

被引:16
|
作者
Shi, Haolun [1 ]
Dong, Jianghu [1 ,2 ,3 ]
Wang, Liangliang [1 ]
Cao, Jiguo [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Univ Nebraska Med Ctr, Dept Biostat, Omaha, NE USA
[3] Univ Nebraska Med Ctr, Div Nephrol, Omaha, NE USA
基金
加拿大自然科学与工程研究理事会;
关键词
filtration rates; functional data analysis; informative missing; kidney glomerular likelihood; orthonormal empirical basis functions; LINEAR-REGRESSION; CONVERGENCE;
D O I
10.1002/sim.8798
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In longitudinal studies, the values of biomarkers are often informatively missing due to dropout. The conventional functional principal component analysis typically disregards the missing information and simply treats the unobserved data points as missing completely at random. As a result, the estimation of the mean function and the covariance surface might be biased, resulting in a biased estimation of the functional principal components. We propose the informatively missing functional principal component analysis (imFunPCA), which is well suited for cases where the longitudinal trajectories are subject to informative missingness. Computation of the functional principal components in our approach is based on the likelihood of the data, where information of both the observed and missing data points are incorporated. We adopt a regression-based orthogonal approximation method to decompose the latent stochastic process based on a set of orthonormal empirical basis functions. Under the case of informative missingness, we show via simulation studies that the performance of our approach is superior to that of the conventional ones. We apply our method on a longitudinal dataset of kidney glomerular filtration rates for patients post renal transplantation.
引用
收藏
页码:712 / 724
页数:13
相关论文
共 50 条
  • [1] Functional principal component analysis for longitudinal and survival data
    Yao, Fang
    [J]. STATISTICA SINICA, 2007, 17 (03) : 965 - 983
  • [2] Functional Principal Component Analysis for Extrapolating Multistream Longitudinal Data
    Chung, Seokhyun
    Kontar, Raed
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2021, 70 (04) : 1321 - 1331
  • [3] Properties of principal component methods for functional and longitudinal data analysis
    Hall, Peter
    Mueller, Hans-Georg
    Wang, Jane-Ling
    [J]. ANNALS OF STATISTICS, 2006, 34 (03): : 1493 - 1517
  • [4] Longitudinal functional principal component analysis
    Greven, Sonja
    Crainiceanu, Ciprian
    Caffo, Brian
    Reich, Daniel
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1022 - 1054
  • [5] Longitudinal Functional Principal Component Analysis
    Greven, Sonja
    Crainiceanu, Ciprian
    Caffo, Brian
    Reich, Daniel
    [J]. RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 149 - 154
  • [6] Regression analysis of asynchronous longitudinal data with informative dropout and dependent observation
    Sun, Zhuowei
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [7] Robust functional principal component analysis for non-Gaussian longitudinal data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [8] DERIVATIVE PRINCIPAL COMPONENT ANALYSIS FOR REPRESENTING THE TIME DYNAMICS OF LONGITUDINAL AND FUNCTIONAL DATA
    Dai, Xiongtao
    Muller, Hans-Georg
    Tao, Wenwen
    [J]. STATISTICA SINICA, 2018, 28 (03) : 1583 - 1609
  • [9] A Semiparametric Marginalized Model for Longitudinal Data with Informative Dropout
    Liu, Mengling
    Lu, Wenbin
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2012, 2012
  • [10] Use of OSWALD for analyzing longitudinal data with informative dropout
    Begley, Amy E.
    Tang, Gong
    Mazumdar, Sati
    Houck, Patricia R.
    Scott, John
    Mulsant, Benoit H.
    Reynolds, Charles F., III
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 85 (02) : 109 - 114