Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor

被引:26
|
作者
Ugeda, Miguel M. [1 ]
Bradley, Aaron J. [1 ]
Shi, Su-Fei [1 ]
da Jornada, Felipe H. [1 ,2 ]
Zhang, Yi [3 ,4 ]
Qiu, Diana Y. [1 ,2 ]
Ruan, Wei [1 ,5 ]
Mo, Sung-Kwan [3 ]
Hussain, Zahid [3 ]
Shen, Zhi-Xun [4 ,6 ,7 ]
Wang, Feng [1 ,2 ,8 ,9 ]
Louie, Steven G. [1 ,2 ]
Crommie, Michael F. [1 ,2 ,8 ,9 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[4] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
[5] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[6] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[8] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[9] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SINGLE-LAYER MOS2; QUASI-PARTICLE; VALLEY POLARIZATION; PHOTOLUMINESCENCE;
D O I
10.1038/NMAT4061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) transition metal dichalcogenides (TMDs) are emerging as a new platform for exploring 2D semiconductor physics(1-9). Reduced screening in two dimensions results in markedly enhanced electron-electron interactions, which have been predicted to generate giant bandgap renormalization and excitonic effects(10-13). Here we present a rigorous experimental observation of extraordinarily large exciton binding energy in a 2D semiconducting TMD. We determine the single-particle electronic bandgap of single-layer MoSe2 by means of scanning tunnelling spectroscopy (STS), as well as the two-particle exciton transition energy using photoluminescence (PL) spectroscopy. These yield an exciton binding energy of 0.55 eV for monolayer MoSe2 on graphene-orders of magnitude larger than what is seen in conventional 3D semiconductors and significantly higher than what we see for MoSe2 monolayers in more highly screening environments. This finding is corroborated by our ab initio GW and Bethe-Salpeter equation calculations(14,15) which include electron correlation effects. The renormalized bandgap and large exciton binding observed here will have a profound impact on electronic and optoelectronic device technologies based on single-layer semiconducting TMDs.
引用
收藏
页码:1091 / 1095
页数:5
相关论文
共 50 条
  • [1] Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
    [J]. Ugeda, Miguel M. (mmugeda@berkeley.edu), 1600, Nature Publishing Group (13):
  • [2] Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
    Miguel M. Ugeda
    Aaron J. Bradley
    Su-Fei Shi
    Felipe H. da Jornada
    Yi Zhang
    Diana Y. Qiu
    Wei Ruan
    Sung-Kwan Mo
    Zahid Hussain
    Zhi-Xun Shen
    Feng Wang
    Steven G. Louie
    Michael F. Crommie
    [J]. Nature Materials, 2014, 13 : 1091 - 1095
  • [3] Anomalous isotope effect on the optical bandgap in a monolayer transition metal dichalcogenide semiconductor
    Yu, Yiling
    Turkowski, Volodymyr
    Hachtel, Jordan A.
    Puretzky, Alexander A.
    Ievlev, Anton V.
    Din, Naseem U.
    Harris, Sumner B.
    Iyer, Vasudevan
    Rouleau, Christopher M.
    Rahman, Talat S.
    Geohegan, David B.
    Xiao, Kai
    [J]. SCIENCE ADVANCES, 2024, 10 (08)
  • [4] A monolayer transition-metal dichalcogenide as a topological excitonic insulator
    Varsano, Daniele
    Palummo, Maurizia
    Molinari, Elisa
    Rontani, Massimo
    [J]. NATURE NANOTECHNOLOGY, 2020, 15 (05) : 367 - +
  • [5] A monolayer transition-metal dichalcogenide as a topological excitonic insulator
    Daniele Varsano
    Maurizia Palummo
    Elisa Molinari
    Massimo Rontani
    [J]. Nature Nanotechnology, 2020, 15 : 367 - 372
  • [6] Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor
    Qiu, Zhizhan
    Trushin, Maxim
    Fang, Hanyan
    Verzhbitskiy, Ivan
    Gao, Shiyuan
    Laksono, Evan
    Yang, Ming
    Lyu, Pin
    Li, Jing
    Su, Jie
    Telychko, Mykola
    Watanabe, Kenji
    Taniguchi, Takashi
    Wu, Jishan
    Castro Neto, A. H.
    Yang, Li
    Eda, Goki
    Adam, Shaffique
    Lu, Jiong
    [J]. SCIENCE ADVANCES, 2019, 5 (07):
  • [7] Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots
    Fouladi-Oskouei, J.
    Shojaei, S.
    Liu, Z.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (14)
  • [8] Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor
    Shang, Jingzhi
    Shen, Xiaonan
    Cong, Chunxiao
    Peimyoo, Namphung
    Cao, Bingchen
    Eginligil, Mustafa
    Yu, Ting
    [J]. ACS NANO, 2015, 9 (01) : 647 - 655
  • [9] Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides
    Tae Young Jeong
    Hakseong Kim
    Sang-Jun Choi
    Kenji Watanabe
    Takashi Taniguchi
    Ki Ju Yee
    Yong-Sung Kim
    Suyong Jung
    [J]. Nature Communications, 10
  • [10] Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides
    Jeong, Tae Young
    Kim, Hakseong
    Choi, Sang-Jun
    Watanabe, Kenji
    Taniguchi, Takashi
    Yee, Ki Ju
    Kim, Yong-Sung
    Jung, Suyong
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)