Advances and Challenges in Computational Target Prediction

被引:67
|
作者
Sydow, Dominique [1 ]
Burggraaff, Lindsey [2 ]
Szengel, Anzelika [1 ]
van Vlijmen, Herman W. T. [2 ,3 ]
Ijzerman, Adriaan P. [2 ]
van Westen, Gerard J. P. [2 ]
Volkamer, Andrea [1 ]
机构
[1] Charite Univ Med Berlin, Silico Toxicol, Inst Physiol, Charitepl 1, D-10117 Berlin, Germany
[2] Leiden Univ, Div Drug Discovery & Safety, Leiden Acad Ctr Drug Res, POB 9502, NL-2300 RA Leiden, Netherlands
[3] Janssen Res & Dev, Computat Chem, Turnhoutseweg 30, B-2340 Beerse, Belgium
关键词
LIGAND-BINDING-SITES; WEB SERVER; SIMILARITY SEARCH; MOLECULAR SIMILARITY; CONNECTIVITY MAP; PROTEIN TARGETS; DRUG DISCOVERY; POLYPHARMACOLOGY; CLASSIFICATION; DOCKING;
D O I
10.1021/acs.jcim.8b00832
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Target deconvolution is a vital initial step in preclinical drug development to determine research focus and strategy. In this respect, computational target prediction is used to identify the most probable targets of an orphan ligand or the most similar targets to a protein under investigation. Applications range from the fundamental analysis of the mode-of-action over polypharmacology or adverse effect predictions to drug repositioning. Here, we provide a review on published ligand- and target-based as well as hybrid approaches for computational target prediction, together with current limitations and future directions.
引用
收藏
页码:1728 / 1742
页数:15
相关论文
共 50 条
  • [31] Machine learning in RNA structure prediction: Advances and challenges
    Zhang, Sicheng
    Li, Jun
    Chen, Shi-Jie
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (17) : 2647 - 2657
  • [32] Seasonal Drought Prediction: Advances, Challenges, and Future Prospects
    Hao, Zengchao
    Singh, Vijay P.
    Xia, Youlong
    [J]. REVIEWS OF GEOPHYSICS, 2018, 56 (01) : 108 - 141
  • [33] The Computational Models of Drug-Target Interaction Prediction
    Ding, Yijie
    Tang, Jijun
    Guo, Fei
    [J]. PROTEIN AND PEPTIDE LETTERS, 2020, 27 (05): : 348 - 358
  • [34] Computational/in silico methods in drug target and lead prediction
    Agamah, Francis E.
    Mazandu, Gaston K.
    Hassan, Radia
    Bope, Christian D.
    Thomford, Nicholas E.
    Ghansah, Anita
    Chimusa, Emile R.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1663 - 1675
  • [35] Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges
    Sonah, Humira
    Deshmukh, Rupesh K.
    Belanger, Richard R.
    [J]. FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [36] Computational challenges in high angle of attack flow prediction
    Cummings, RM
    Forsythe, JR
    Morton, SA
    Squires, KD
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2003, 39 (05) : 369 - 384
  • [37] Chemotherapy and target therapy for hepatocellular carcinoma:New advances and challenges
    Gan-Lu Deng
    Shan Zeng
    Hong Shen
    [J]. World Journal of Hepatology, 2015, 7 (05) : 787 - 798
  • [38] Artificial intelligence methods in kinase target profiling: Advances and challenges
    Gu, Shukai
    Liu, Huanxiang
    Liu, Liwei
    Hou, Tingjun
    Kang, Yu
    [J]. DRUG DISCOVERY TODAY, 2023, 28 (11)
  • [39] Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges
    Deng, Gan-Lu
    Zeng, Shan
    Shen, Hong
    [J]. WORLD JOURNAL OF HEPATOLOGY, 2015, 7 (05) : 787 - 798
  • [40] Advances in Computational Methods for Protein-Protein Interaction Prediction
    Xian, Lei
    Wang, Yansu
    [J]. ELECTRONICS, 2024, 13 (06)