On the use of a priori information for sparse signal approximations

被引:27
|
作者
Escoda, Oscar Divorra [1 ]
Granai, Lorenzo [1 ]
Vandergheynst, Pierre [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Inst, CH-1015 Lausanne, Switzerland
关键词
a priori knowledge; greedy algorithms; redundant dictionaries; relaxation algorithms; sparse approximations; weighted basis pursuit denoising; weighted matching pursuit;
D O I
10.1109/TSP.2006.879306
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent results have underlined the importance of incoherence in redundant dictionaries for a good behavior of decomposition algorithms like matching and basis pursuit. However, appropriate dictionaries for a given application may not be able to meet the incoherence condition. In such a case, decomposition algorithms may completely fail in the retrieval of the sparsest approximation. This paper studies the effect of introducing a priori knowledge when recovering sparse approximations over redundant dictionaries. Theoretical results show how the use of reliable a priori information (which in this paper appears under the form of weights) can improve the performances of standard approaches such as greedy algorithms and relaxation methods. Our results reduce to the classical case when no prior information is available. Examples validate and illustrate our theoretical statements.
引用
收藏
页码:3468 / 3482
页数:15
相关论文
共 50 条
  • [1] Sparse approximations in signal and image processing
    Gribonval, R
    Nielsen, M
    [J]. SIGNAL PROCESSING, 2006, 86 (03) : 415 - 416
  • [2] Sparse Approximations of Directed Information Graphs
    Quinn, Christopher J.
    Pinar, Ali
    Gao, Jing
    Su, Lu
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1735 - 1739
  • [3] EEG Signal Analysis using Sparse Approximations
    Ravali, Palakurthi
    Babu, J. Sheshagiri
    [J]. 2017 THIRD INTERNATIONAL CONFERENCE ON BIOSIGNALS, IMAGES AND INSTRUMENTATION (ICBSII), 2017,
  • [4] Superresolution in Signal Processing Using A Priori Information
    Lagovsky, B. A.
    Samokhin, A. B.
    [J]. 2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 779 - 782
  • [5] A simple test to check the optimality of sparse signal approximations
    Gribonval, R
    Ventura, RMFI
    Vandergheynst, R
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 717 - 720
  • [6] Superresolution in Signal Processing Using a Priori Information
    Lagovsky, B. A.
    Chikhina, A. G.
    [J]. 2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 944 - 947
  • [7] Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information
    Tang, Wei
    Shi, Zhenwei
    Wu, Ying
    Zhang, Changshui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (02): : 770 - 783
  • [8] Scattering Correction by Use of a Priori Information
    Ottestad, Silje
    Isaksson, Tomas
    Saeys, Wouter
    Wold, Jens Petter
    [J]. APPLIED SPECTROSCOPY, 2010, 64 (07) : 795 - 804
  • [9] Use of a priori information for the deconvolution of ultrasonic signals
    Sallard, J
    Paradis, L
    [J]. REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 17A AND 17B, 1998, : 735 - 742
  • [10] USE OF A PRIORI INFORMATION WITH AID OF CONJUGATE EQUATIONS
    MARCHUK, GI
    IUDIN, MS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1978, 243 (01): : 66 - 69