Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information

被引:119
|
作者
Tang, Wei [1 ]
Shi, Zhenwei [2 ,3 ]
Wu, Ying [4 ]
Zhang, Changshui [5 ]
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, Image Proc Ctr, Sch Astronaut, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[3] Beihang Univ, Beijing Key Lab Digital Media, Beijing 100191, Peoples R China
[4] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[5] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Tsinghua Natl Lab Informat Sci & Technol, Dept Automat, Beijing 100084, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Alternating direction method of multipliers (ADMM); hyperspectral unmixing; sparse unmixing; spectral a priori information; NONNEGATIVE MATRIX FACTORIZATION; ALGORITHM; ENDMEMBERS;
D O I
10.1109/TGRS.2014.2328336
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Given a spectral library, sparse unmixing aims at finding the optimal subset of endmembers from it to model each pixel in the hyperspectral scene. However, sparse unmixing still remains a challenging task due to the usually high mutual coherence of the spectral library. In this paper, we exploit the spectral a priori information in the hyperspectral image to alleviate this difficulty. It assumes that some materials in the spectral library are known to exist in the scene. Such information can be obtained via field investigation or hyperspectral data analysis. Then, we propose a novel model to incorporate the spectral a priori information into sparse unmixing. Based on the alternating direction method of multipliers, we present a new algorithm, which is termed sparse unmixing using spectral a priori information (SUnSPI), to solve the model. Experimental results on both synthetic and real data demonstrate that the spectral a priori information is beneficial to sparse unmixing and that SUnSPI can exploit this information effectively to improve the abundance estimation.
引用
收藏
页码:770 / 783
页数:14
相关论文
共 50 条
  • [1] Sparse Unmixing of Hyperspectral Data
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06): : 2014 - 2039
  • [2] SUPERRESOLUTION OF HYPERSPECTRAL IMAGES USING SPECTRAL UNMIXING AND SPARSE REGULARIZATION
    Nezhad, Zahra Hashemi
    Karami, Azam
    Heylen, Rob
    Scheunders, Paul
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7216 - 7219
  • [3] Sparse Hyperspectral Unmixing Using Spectral Library Adaptive Adjustment
    Zhang, Zuoyu
    Liao, Shouyi
    Fang, Hao
    Zhang, Hexin
    Wang, Shicheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4873 - 4887
  • [4] COLLABORATIVE SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7488 - 7491
  • [5] ROBUST SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Ma, Yang
    Li, Chang
    Ma, Jiayi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6193 - 6196
  • [6] PARALLEL SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Rodriguez Alves, Jose M.
    Nascimento, Jose M. P.
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Silva, Vitor
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1446 - 1449
  • [7] Hyperspectral Unmixing Using Spectral Library Sparse Scaling and Guided Filter
    Zhang, Zuoyu
    Liao, Shouyi
    Fang, Hao
    Zhang, Hexin
    Wang, Shicheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Sparse Spectral Unmixing of Hyperspectral Images using Expectation-Propagation
    Li, Zeng
    Altmann, Yoann
    Chen, Jie
    Mclaughlin, Stephen
    Rahardja, Susanto
    2020 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2020, : 197 - 200
  • [9] Hyperspectral Unmixing Using Spectral Library Sparse Scaling and Guided Filter
    Zhang, Zuoyu
    Liao, Shouyi
    Fang, Hao
    Zhang, Hexin
    Wang, Shicheng
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [10] STRUCTURED SPARSE BAYESIAN HYPERSPECTRAL COMPRESSIVE SENSING USING SPECTRAL UNMIXING
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    Li, Fei
    Yan, Hangqi
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,