Analytic optimization of shrinkage parameters based on regularized subspace information criterion

被引:1
|
作者
Sugiyama, Masashi [1 ]
Sakurai, Keisuke
机构
[1] Tokyo Inst Technol, Dept Comp Sci, Tokyo 1528552, Japan
[2] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Yokohama, Kanagawa 2268503, Japan
关键词
supervised learning; generalization capability; model selection; shrinkage estimator; regularized subspace information criterion;
D O I
10.1093/ietfec/e89-a.8.2216
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
For obtaining a higher level of generalization capability in supervised learning, model parameters should be optimized, i.e., they should be determined in such a way that the generalization error is minimized. However, since the generalization error is inaccessible in practice, model parameters are usually determined in such a way that an estimate, of the generalization error is minimized. A standard procedure for model parameter optimization is to first prepare a finite set of candidates of model parameter values, estimate the generalization error for each candidate, and then choose the best one from the candidates. If the number of candidates is increased in this procedure, the optimization quality may be improved. However, this in turn increases the computational cost. In this paper, we give methods for analytically finding the optimal model parameter value from a set of infinitely many candidates. This maximally enhances the optimization quality while the computational cost is kept reasonable.
引用
收藏
页码:2216 / 2225
页数:10
相关论文
共 50 条
  • [41] Optimal design of regularization term and regularization parameter by subspace information criterion
    Sugiyama, M
    Ogawa, H
    [J]. NEURAL NETWORKS, 2002, 15 (03) : 349 - 361
  • [42] Steganalysis Feature Subspace Selection Based on Fisher Criterion
    Yang, Chunfang
    Zhang, Yi
    Wang, Ping
    Luo, Xiangyang
    Liu, Fenlin
    Lu, Jicang
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 514 - 521
  • [43] Optimization model controlling parameters of a roller drilling process based on energy criterion
    Shigina, A. A.
    Shigin, A. O.
    Stupina, A. A.
    Antipina, S. M.
    Dzhioeva, N. N.
    [J]. IX INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC AND RESEARCH CONFERENCE MODERN ISSUES IN SCIENCE AND TECHNOLOGY / WORKSHOP ADVANCED TECHNOLOGIES IN AEROSPACE, MECHANICAL AND AUTOMATION ENGINEERING, 2018, 450
  • [44] Multimodel adaptive subtraction with regularized parameter selection via generalized information criterion
    Liu, Kuang-Hung
    Kostov, Clement
    [J]. GEOPHYSICS, 2015, 80 (03) : V33 - V45
  • [45] Adaptively Regularized Bases-Expansion Subspace Optimization Methods for Electrical Impedance Tomography
    Zong, Zheng
    Wang, Yusong
    He, Siyuan
    Wei, Zhun
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (10) : 3098 - 3108
  • [46] Regularized RKHS-Based Subspace Learning for Motor Imagery Classification
    Jiang, Linzhi
    Liu, Shuyu
    Ma, Zhengming
    Lei, Wenjie
    Chen, Cheng
    [J]. ENTROPY, 2022, 24 (02)
  • [47] Akaike Information Criterion-based Objective for Belief Rule Base Optimization
    Change, Leilei
    Wang, Liuying
    Wang, Wei
    Liu, Gu
    Ling, Xiaodong
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 545 - 549
  • [48] OPTIMIZATION OF QUANTUM SIGNALS PROCESSING BY INFORMATION CRITERION
    BELAVKIN, VP
    STRATONO.RL
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1973, 18 (09): : 1839 - 1844
  • [49] REGULARIZED SUBSPACE-BASED ACOUSTIC MULTICHANNEL EQUALIZATION FOR SPEECH DEREVERBERATION
    Kodrasi, Ina
    Doclo, Simon
    [J]. 2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [50] Regularized denoising latent subspace based linear regression for image classification
    Ziyi Su
    Wang Wenbo
    Weibin Zhang
    [J]. Pattern Analysis and Applications, 2023, 26 (3) : 1027 - 1044