Analytic optimization of shrinkage parameters based on regularized subspace information criterion

被引:1
|
作者
Sugiyama, Masashi [1 ]
Sakurai, Keisuke
机构
[1] Tokyo Inst Technol, Dept Comp Sci, Tokyo 1528552, Japan
[2] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Yokohama, Kanagawa 2268503, Japan
关键词
supervised learning; generalization capability; model selection; shrinkage estimator; regularized subspace information criterion;
D O I
10.1093/ietfec/e89-a.8.2216
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
For obtaining a higher level of generalization capability in supervised learning, model parameters should be optimized, i.e., they should be determined in such a way that the generalization error is minimized. However, since the generalization error is inaccessible in practice, model parameters are usually determined in such a way that an estimate, of the generalization error is minimized. A standard procedure for model parameter optimization is to first prepare a finite set of candidates of model parameter values, estimate the generalization error for each candidate, and then choose the best one from the candidates. If the number of candidates is increased in this procedure, the optimization quality may be improved. However, this in turn increases the computational cost. In this paper, we give methods for analytically finding the optimal model parameter value from a set of infinitely many candidates. This maximally enhances the optimization quality while the computational cost is kept reasonable.
引用
收藏
页码:2216 / 2225
页数:10
相关论文
共 50 条
  • [1] Analytic optimization of adaptive ridge parameters based on regularized subspace information criterion
    Gokita, Shun
    Sugiyama, Masashi
    Sakurai, Keisuke
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (11) : 2584 - 2592
  • [2] A new meta-criterion for regularized subspace information criterion
    Hidaka, Yasushi
    Sugiyama, Masashi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2007, E90D (11): : 1779 - 1786
  • [3] Subspace information criterion for image restoration - Optimizing parameters in linear filters
    Sugiyama, M.
    Imaizumi, D.
    Ogawa, H.
    [J]. IEICE Transactions on Information and Systems, 2001, E84-D (09) : 1249 - 1257
  • [4] Subspace information criterion for image restoration - Optimizing parameters in linear filters
    Sugiyama, M
    Imaizumi, D
    Ogawa, H
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2001, E84D (09): : 1249 - 1256
  • [5] A novel algorithm for signal subspace tracking based on a new subspace information criterion
    Valizadeh, Amir
    Mohammadian, Roozbeh
    Rafiei, Ali
    Rafati, Amirhossein
    [J]. 2007 6TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS & SIGNAL PROCESSING, VOLS 1-4, 2007, : 1141 - 1144
  • [6] Trading variance reduction with unbiasedness:: The regularized subspace information criterion for robust model selection in kernel regression
    Sugiyama, M
    Kawanabe, M
    Müller, KR
    [J]. NEURAL COMPUTATION, 2004, 16 (05) : 1077 - 1104
  • [7] On convergence of fast subspace tracking based on novel information criterion
    Feng, DZ
    Zheng, WX
    [J]. PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS & SIGNAL PROCESSING, PROCEEDINGS, VOLS 1 AND 2, 2003, : 261 - 264
  • [8] Subspace information criterion for model selection
    Sugiyama, M
    Ogawa, H
    [J]. NEURAL COMPUTATION, 2001, 13 (08) : 1863 - 1889
  • [9] Improving precision of the subspace information criterion
    Sugiyama, M
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (07): : 1885 - 1895
  • [10] ε-Insensitive Modification of Subspace Information Criterion
    Zhou, Xuejun
    [J]. THIRD INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING, 2009, : 188 - 191