Construction of lubricant composite coating on Ti6Al4V alloy using micro-arc oxidation and grafting hydrophilic polymer

被引:25
|
作者
Wang, Kun
Xiong, Dangsheng [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti6Al4V alloy; Porous structure; Hydrophilic polymer brushes; Friction and wear; CROSS-LINKED POLYETHYLENE; TRIBOLOGICAL PROPERTIES; TITANIUM-ALLOYS; FATIGUE PROPERTIES; ION-IMPLANTATION; TI-6AL-4V ALLOY; WEAR PROPERTIES; FRETTING WEAR; SURFACE; PERFORMANCE;
D O I
10.1016/j.msec.2018.04.057
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
To improve the tribological properties of Ti6Al4V alloy to realize the application in artificial joints, a novel composite coating was designed and fabricated on its surface through the combination of two different surface modification techniques micro-arc oxidation (MAO) and grafting hydrophilic polymer. The characterizations of morphologies and composition of MAO layer were examined using scanning electron microscopy (SEM), energy dispersive spectroscope (EDS) and X-ray diffraction (XRD). It was found that a TiO2 layer displaying uniform porous structure formed on the surface based on the optimal MAO parameters of an oxidation voltage of 450 V and an oxidation time of 60 min. After grafting 3-dimethyl(3-(N-methacrylamido)propyl) ammonium propane sulfonate (MPDSAH), Fourier-transform infrared spectroscopy with attenuated total reflection (FT-IR/ATR) and wettability test demonstrated the successful modification. Tribological performance of composite coating modified Ti6Al4V alloy in water exhibited the low friction coefficient of 0.13 and favorable wear resistance.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 50 条
  • [1] Growth characteristics of scanning micro-arc oxidation coating on Ti6Al4V alloy
    Wang, Ye
    Shen, Jie
    Wu, Guolong
    Yao, Jianhua
    SURFACE ENGINEERING, 2023, 39 (02) : 218 - 228
  • [2] Fretting wear of micro-arc oxidation coating prepared on Ti6Al4V alloy
    林修洲
    朱旻昊
    郑健峰
    罗军
    莫继良
    TransactionsofNonferrousMetalsSocietyofChina, 2010, 20 (04) : 537 - 546
  • [3] Microstructure and Tribological Performance of Micro-Arc Oxidation Coating on Ti6Al4V Alloy
    Zhang Chao
    Wei Nan
    Kong Dejun
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (04) : 961 - 967
  • [4] Fretting wear of micro-arc oxidation coating prepared on Ti6Al4V alloy
    Lin Xiu-zhou
    Zhu Min-hao
    Zheng Jian-feng
    Luo Jun
    Mo Ji-liang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 (04) : 537 - 546
  • [5] Microstructure and Tribological Performance of Micro-Arc Oxidation Coating on Ti6Al4V Alloy
    Zhang Chao
    Wei Nan
    Kong Dejun
    Transactions of the Indian Institute of Metals, 2023, 76 : 961 - 967
  • [6] Investigation on biocompatibility of micro-arc oxidation Ti6Al4V alloy
    Liu, Zhongde
    Luo, Rui
    Cheng, Xiaonong
    Zhou, Xinghua
    Zhang, Yingtao
    Yan, Feixiang
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2013, 27 (04): : 355 - 359
  • [7] Effects of oxidation time on micro-arc oxidation coatings formed on Ti6Al4V alloy
    Liu Z.
    Sun M.
    Fu H.
    Zhang Z.
    Xiang Z.
    Jiangsu Daxue Xuebao (Ziran Kexue Ban) / Journal of Jiangsu University (Natural Science Edition), 2010, 31 (02): : 160 - 164
  • [8] The biocompatibility of hydroxyapatite film deposition on micro-arc oxidation Ti6Al4V alloy
    Luo, Rui
    Liu, Zhongde
    Yan, Feixiang
    Kong, Yang
    Zhang, Yingtao
    APPLIED SURFACE SCIENCE, 2013, 266 : 57 - 61
  • [9] Effect of auxiliary laser irradiation on characteristics and properties of micro-arc oxidation coating on Ti6Al4V alloy
    Wang, Ye
    Peng, Qiandi
    Wu, Guolong
    Yao, Jianhua
    Yin, Yanyi
    Li, Lin
    Zheng, Yafeng
    Wen, Chen
    CERAMICS INTERNATIONAL, 2024, 50 (11) : 19412 - 19423
  • [10] Enhanced cytocompatibility of Ti6Al4V alloy through selective removal of Al and V from the hierarchical micro-arc oxidation coating
    Guan, Shiwei
    Qi, Min
    Wang, Cong
    Wang, Shuyue
    Wang, Weiqiang
    APPLIED SURFACE SCIENCE, 2021, 541