Performance of Innovative Precast Concrete Sleepers Prestressed with Glass Fiber-Reinforced Polymer Reinforcing Bars

被引:5
|
作者
Hadhood, Abdeldayem [1 ]
Mohamed, Hamdy M. [1 ]
Mwiseneza, Celestin [1 ]
Benmokrane, Brahim [2 ,3 ,4 ]
机构
[1] Univ Sherbrooke, Dept Civil Engn, Sherbrooke, PQ, Canada
[2] Univ Sherbrooke, Dept Civil Engn, Civil Engn, Sherbrooke, PQ, Canada
[3] Univ Sherbrooke, Dept Civil Engn, FRP Reinforcement Concrete Infrastruct, Sherbrooke, PQ, Canada
[4] Univ Sherbrooke, Dept Civil Engn, Adv Composite Mat Civil Struct, Sherbrooke, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
American Railway Engineering and Maintenance-of-Way Association (AREMA); glass fiber-reinforced polymer (GFRP) bars; monoblock ties; prestressed; prestressing; railway; sleepers; RAILWAY SLEEPERS;
D O I
10.14359/51728186
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Replacing defective reinforced concrete railway sleepers has reportedly been urged by several businesses and maintenance agencies. The harsh environmental conditions, especially in North America, trigger material degradation and steel corrosion. Glass fiber-reinforced polymer (GFRP) bars have been increasingly used in a wide variety of applications. The present study presents an original, promising application of GFRP as prestressed reinforcement in concrete railway sleepers. For prestressed GFRP sleepers to be accepted as replacements for defective sleepers made with timber and concrete, they must pass several short- and long-term tests. Full-scale GFRP- and steel-reinforced concrete sleepers were designed, tested, and compared according to the requirements of the American Railway Engineering and Maintenance-of-Way Association (AREMA). The test results show that GFRP- and steel-reinforced concrete sleepers achieved similar cracking levels and ultimate loads in the rail-seat negative and positive tests. The tested GFRP specimens met AREMA s requirements for static and fatigue loading for use in freight and commuter rail systems with the designated loads, spacings, and train speed used in this study. The failure of the prestressed GFRP-RC sleepers was governed by shear-compression failure, while the prestressed steel-RC sleepers failed by crushing of the concrete due to the slippage of steel strands. Moreover; field inspection of GFRP-rein forced concrete sleepers after 3 years under actual service conditions reveal very competitive performance and no cracks. Lastly, the results of this study constitute a basic step toward establishing code provisions for using GFRP bars as prestressing reinforcement in concrete sleepers for railway applications.
引用
收藏
页码:277 / 288
页数:12
相关论文
共 50 条
  • [31] Shear Capacity of Lightweight Concrete Beam Reinforced with Glass Fiber-Reinforced Polymer Bars
    Akbarzadeh Bengar, Habib
    Ahmadi Zarrinkolaei, Fatemeh
    Bozorgnasab, Mohsen
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2021, 45 (03) : 1565 - 1574
  • [32] Assessment of Design Guidelines of Concrete Columns Reinforced with Glass Fiber-Reinforced Polymer Bars
    Hadhood, A.
    Mohamed, H. M.
    Benmokrane, B.
    Nanni, A.
    Shield, C. K.
    ACI STRUCTURAL JOURNAL, 2019, 116 (04) : 193 - 207
  • [33] Shear Capacity of Lightweight Concrete Beam Reinforced with Glass Fiber-Reinforced Polymer Bars
    Habib Akbarzadeh Bengar
    Fatemeh Ahmadi Zarrinkolaei
    Mohsen Bozorgnasab
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021, 45 : 1565 - 1574
  • [34] Numerical Analysis of Concrete Deep Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Sheikh-Sobeh, Amena
    Kachouh, Nancy
    El-Maaddawy, Tamer
    BUILDINGS, 2023, 13 (11)
  • [35] Performance of concrete beams prestressed with aramid fiber-reinforced polymer tendons
    Toutanji, H
    Saafi, M
    COMPOSITE STRUCTURES, 1999, 44 (01) : 63 - 70
  • [36] Flexural Performance of Basalt Fiber-Reinforced Polymer Prestressed Concrete Beams
    Alraie, Ali
    Matsagar, Vasant
    ACI STRUCTURAL JOURNAL, 2023, 120 (01) : 187 - 202
  • [37] Flexural Behavior of Steel Fiber-Reinforced Lightweight Aggregate Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Wu, Tao
    Sun, Yijia
    Liu, Xi
    Wei, Hui
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2019, 23 (02)
  • [39] Splitting of Concrete with Steel, Glass Fiber-Reinforced Polymer, and Basalt Fiber-Reinforced Polymer Bars Exposed to MgSO4
    Kim, Yail J.
    Chai, Yufei
    ACI STRUCTURAL JOURNAL, 2020, 117 (03) : 3 - 16
  • [40] Experimental Study on Splice Strength of Glass Fiber-Reinforced Polymer Reinforcing Bars in Normal and Self-Consolidating Concrete
    Zemour, Nabila
    Asadian, Alireza
    Ahmed, Ehab A.
    Benmokrane, Brahim
    Khayat, Kamal H.
    ACI MATERIALS JOURNAL, 2019, 116 (03) : 105 - 118