Theoretical investigation of strain-engineered WSe2 monolayers as anode material for Li-ion batteries

被引:50
|
作者
Rehman, Javed [1 ,2 ,3 ]
Ali, Roshan [4 ]
Ahmad, Nisar [3 ]
Lv, Xiaodong [5 ]
Guo, Chunlei [4 ,6 ]
机构
[1] Jilin Univ, Key Lab Automobile Mat, Minist Educ, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Coll Mat Sci & Engn, Changchun 130012, Jilin, Peoples R China
[3] BUITEMS, Dept Phys, Quetta 87300, Baluchistan, Pakistan
[4] Chinese Acad Sci, Guo China US Pho Ton Lab, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[5] Inner Mongolia Univ, Phys Sch Sci & Technol, Hohhot 010021, Peoples R China
[6] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
关键词
2D materials; LIBs; Adsorption; Diffusion; Tensile strain; TRANSITION-METAL DICHALCOGENIDES; ELECTRODE MATERIALS; CRYSTALLINE WSE2; MONO LAYERS; LITHIUM; ENERGY; ADSORPTION; CHEMISTRY; GRAPHENE; STORAGE;
D O I
10.1016/j.jallcom.2019.07.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It poses a great challenge to design anode materials with large capacity, excellent cyclic stability and high rate performance. In this paper, through first principle calculations, we computed electronic properties of monolayer WSe2 with and without strain effects. Our results show that the electronic band gap decreases with strain percent. At 0% tensile strain the value of the band gap is 1.4 eV while at 10% tensile strain the band gap decreases to 0.7 eV. Therefore, the strain effect enhances the electronic conductivity and leads to an increase in the charge carrier transport. In addition, our predictions show that the adsorption energy increases with the strain. Finally, we computed the diffusion barrier for the migration of Li on the surface of a strain engineered WSe2 monolayer. The lower barrier energy (0.24 eV) reveals that Li can easily overcome this barrier. Our results show that the strain-engineered WSe 2 monolayers are promising anode material for Li-ion battery. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:370 / 375
页数:6
相关论文
共 50 条
  • [21] Strain-engineered photoelectric conversion properties of lateral monolayer WS2/WSe2 heterojunctions
    Zhao, Yipeng
    Tan, Shilin
    Ouyang, Gang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (14)
  • [22] Investigation of cobalt oxides as anode materials for Li-ion batteries
    Wang, GX
    Chen, Y
    Konstantinov, K
    Lindsay, M
    Liu, HK
    Dou, SX
    JOURNAL OF POWER SOURCES, 2002, 109 (01) : 142 - 147
  • [23] Investigation on pyrolitic carbon-coated microcrystalline graphite as anode material for Li-ion batteries
    He, Yue-De
    Liu, Hong-Bo
    Hong, Quan
    Xiao, Hai-He
    Gongneng Cailiao/Journal of Functional Materials, 2013, 44 (16): : 2397 - 2400
  • [24] Theoretical investigations of TiNbC MXenes as anode materials for Li-ion batteries
    Li, Ya-Meng
    Chen, Wan-Gao
    Guo, Yong-Liang
    Jiao, Zhao-Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 778 : 53 - 60
  • [25] Understanding the role of porosity in carbon monolayers for their use as anode material for Li-ion batteries: A first principle study
    Celaya, Christian A.
    Cuentas-Gallegos, A. K.
    Muniz, Jesus
    APPLIED SURFACE SCIENCE, 2023, 635
  • [26] Development of high power anode material for automotive li-ion batteries
    Chahar, Bharat S.
    Mao, Zhenhua
    World Electric Vehicle Journal, 2009, 3 (04): : 837 - 842
  • [27] Intercalated SiOC/graphene composites as anode material for li-ion batteries
    Ren, YuRong
    Yang, Bo
    Huang, XiaoBing
    Chu, FuQiang
    Qiu, Jianhua
    Ding, JianNing
    SOLID STATE IONICS, 2015, 278 : 198 - 202
  • [28] Silica from diatom frustules as anode material for Li-ion batteries
    Norberg, Andreas Nicolai
    Wagner, Nils Peter
    Kaland, Henning
    Vullum-Bruer, Fride
    Svensson, Ann Mari
    RSC ADVANCES, 2019, 9 (70) : 41228 - 41239
  • [29] Electrochemical and thermal behavior of graphite anode material for Li-ion batteries
    Bang, HJ
    Barsukov, IV
    Zaleski, P
    Prakash, J
    BATTERIES AND SUPERCAPACITORS, 2003, : 368 - 373
  • [30] COF-based anode material for rechargeable Li-ion batteries
    Omidvar, Akbar
    SYNTHETIC METALS, 2023, 297