In situ synthesis of carbon nanotube doped metal-organic frameworks for CO2 capture

被引:27
|
作者
Iqbal, Nousheen [1 ,2 ]
Wang, Xianfeng [1 ,2 ,3 ,4 ]
Yu, Jianyong [4 ]
Jabeen, Naila [5 ]
Ullah, Hameed [6 ]
Ding, Bin [1 ,2 ,3 ,4 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, Key Lab High Performance Fibers & Prod, Minist Educ, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[3] Donghua Univ, Coll Text, Key Lab Text Sci & Technol, Minist Educ, Shanghai 201620, Peoples R China
[4] Donghua Univ, Modern Text Inst, Nanomat Res Ctr, Shanghai 200051, Peoples R China
[5] Quaid i Azam Univ, Natl Ctr Phys, Islamabad 44000, Pakistan
[6] Hazara Univ, Dept Chem, Mansehra 21300, Pakistan
来源
RSC ADVANCES | 2016年 / 6卷 / 06期
基金
中国国家自然科学基金;
关键词
AMINO-ACID; OXIDE COMPOSITES; SOLID SORBENTS; ADSORPTION; DIOXIDE; NITROGEN; NANOPARTICLES; DESORPTION; SEPARATION; CAPACITY;
D O I
10.1039/c5ra25465e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal organic-frameworks (MOFs) with intriguing structural motifs and unique properties are potential candidates for carbon dioxide (CO2) storage. Although structures with the single functional constructions and micropores were demonstrated to capture CO2 with high capacities at low temperature, their feeble interactions still limit practical applications at room temperature. Herein, we report in situ growth observation of hierarchical pores in copper(II) benzene-1,3,5-tricarboxylate (Cu-BTC) doped MOFs which gives high adsorption and enhances the CO2 binding ability. Thus, understanding this CO2-capturing mechanism, which has been causing controversy, is crucial for further development toward advanced study. The doped MOFs exhibit high specific surface areas of 1180 m(2) g(-1) and show good capacity to store CO2, which is mainly due to the presence of acid and amine functionalized CNTs and a large amount of narrow micropores (<1.0 nm).
引用
收藏
页码:4382 / 4386
页数:5
相关论文
共 50 条
  • [31] Molecular modeling and systematic evaluation of metal-organic frameworks for CO2 capture
    Bae, Youn-Sang
    Wilmer, Christopher E.
    Yazaydin, A. O.
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [32] Biological Metal-Organic Frameworks (Bio-MOFs) for CO2 Capture
    Zulys, Agustino
    Yulia, Fayza
    Muhadzib, Naufal
    Nasruddin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (01) : 37 - 51
  • [33] Research progress of Metal-Organic Frameworks (MOFs) in CO2 capture and transformation
    Liu F.
    Dong H.
    Wang T.
    Huang W.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2022, 50 (06): : 117 - 135
  • [34] Molecular Design of Zirconium Tetrazolate Metal-Organic Frameworks for CO2 Capture
    Zhang, Kang
    Qao, Zhiwei
    Jiang, Jianwen
    CRYSTAL GROWTH & DESIGN, 2017, 17 (02) : 543 - 549
  • [35] Progress in adsorption-based CO2 capture by metal-organic frameworks
    Liu, Jian
    Thallapally, Praveen K.
    McGrail, B. Peter
    Brown, Daryl R.
    Liu, Jun
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2308 - 2322
  • [36] Ligand-Assisted Enhancement of CO2 Capture in Metal-Organic Frameworks
    Poloni, Roberta
    Smit, Berend
    Neaton, Jeffrey B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (15) : 6714 - 6719
  • [37] Metal-organic frameworks for CO2 photoreduction
    Zhang, Lei
    Zhang, Junqing
    FRONTIERS IN ENERGY, 2019, 13 (02) : 221 - 250
  • [38] CO2 Adsorption in Metal-organic Frameworks
    Kim, Jun
    Kim, Hee-Young
    Ahn, Wha-Seung
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2013, 51 (02): : 171 - 180
  • [39] Metal-organic frameworks for CO2 photoreduction
    Lei Zhang
    Junqing Zhang
    Frontiers in Energy, 2019, 13 : 221 - 250
  • [40] Designed Synthesis of Functionalized Two-Dimensional Metal-Organic Frameworks with Preferential CO2 Capture
    Yan, Qiuju
    Lin, Yichao
    Wu, Pengyan
    Zhao, Li
    Cao, Lujie
    Peng, Luming
    Kong, Chunlong
    Chen, Liang
    CHEMPLUSCHEM, 2013, 78 (01): : 86 - 91