On the stability of a quadratic Jensen type functional equation

被引:28
|
作者
Lee, YW [1 ]
机构
[1] Taejon Univ, Dept Math, Taejon 300716, South Korea
关键词
Hyers-Ulam-Rassias; quadratic functional equation;
D O I
10.1016/S0022-247X(02)00093-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain the general solution of the quadratic Jensen type functional equation 9f(x + y + z/3) + f(x) + f(y) + f(z) = 4[f(x + y/2) + f(y + z/2) + f(z + x/2)] and prove the stability of this equation in the spirit of Hyers, Ulam, Rassias, and Gavruta. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:590 / 601
页数:12
相关论文
共 50 条
  • [41] STABILITY OF THE JENSEN TYPE FUNCTIONAL EQUATION IN BANACH ALGEBRAS: A FIXED POINT APPROACH
    Park, Choonkil
    Park, Won-Gil
    Lee, Jung Rye
    Rassias, Themistocles M.
    KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (02): : 149 - 161
  • [42] NON-ARCHIMEDEAN STABILITY OF CAUCHY-JENSEN TYPE FUNCTIONAL EQUATION
    Kenary, H. Azadi
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2011, 2 (02): : 92 - 102
  • [43] On the Ulam stability of the Cauchy-Jensen equation and the additive-quadratic equation
    Bae, Jae-Hyeong
    Park, Won-Gil
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 710 - 718
  • [44] A QUADRATIC TYPE FUNCTIONAL EQUATION
    Sadeghi, Ghadir
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (04): : 122 - 128
  • [45] An alternative functional equation of Jensen type on groups
    Srisawat, Choodech
    Kitisin, Nataphan
    Nakmahachalasint, Paisan
    SCIENCEASIA, 2015, 41 (04): : 280 - 288
  • [46] Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation
    Gordji, M. Eshaghi
    Gharetapeh, S. Kaboli
    Rassias, J. M.
    Zolfaghari, S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [47] ON THE STABILITY OF AN ALTERNATIVE QUADRATIC FUNCTIONAL EQUATION
    Nakmahachalasint, Paisan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01): : 179 - 185
  • [48] A Mixed-Type Quadratic and Cubic Functional Equation and Its Stability
    Towanlong, W.
    Nakmahachalasint, P.
    THAI JOURNAL OF MATHEMATICS, 2010, 8 (04): : 61 - 71
  • [49] Stability of a quadratic functional equation on semigroups
    Kominek, Zygfryd
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 75 (1-2): : 173 - 178
  • [50] Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation
    M. Eshaghi Gordji
    S. Kaboli Gharetapeh
    J. M. Rassias
    S. Zolfaghari
    Advances in Difference Equations, 2009