Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

被引:3
|
作者
d'Aquino, M. [1 ]
Capuano, F. [2 ]
Coppola, G. [2 ]
Serpico, C. [3 ]
Mayergoyz, I. D. [4 ]
机构
[1] Univ Naples Parthenope, Engn Dept, I-80143 Naples, Italy
[2] Univ Naples Federico II, Dept Ind Engn, I-80125 Naples, Italy
[3] Univ Naples Federico II, DIETI, I-80125 Naples, Italy
[4] Univ Maryland, ECE Dept, College Pk, MD 20742 USA
关键词
RUNGE-KUTTA SCHEMES; HAMILTONIAN-SYSTEMS; RELAXATION; EQUATION; MICROMAGNETICS;
D O I
10.1063/1.5007340
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods. (C) 2017 Author(s).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Pseudo-symplectic numerical schemes for Landau-Lifshitz dynamics
    d'Aquino, M.
    Capuano, F.
    Coppola, G.
    Serpico, C.
    Mayergoyz, I. D.
    PHYSICA B-CONDENSED MATTER, 2018, 549 : 98 - 101
  • [2] Numerical technique for integration of the Landau-Lifshitz equation
    Serpico, C
    Mayergoyz, ID
    Bertotti, G
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) : 6991 - 6993
  • [3] On symplectic and isospectral integration of the stationary Landau-Lifshitz (Neumann oscillator) equation
    Kresic-Juric, Sasa
    Martinic-Bilac, Tea
    MATHEMATICAL COMMUNICATIONS, 2023, 28 (01) : 11 - 27
  • [4] Numerical methods for the Landau-Lifshitz equation
    E, W
    Wang, XP
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) : 1647 - 1665
  • [5] On Perturbations of Generalized Landau-Lifshitz Dynamics
    Mark Freidlin
    Wenqing Hu
    Journal of Statistical Physics, 2011, 144
  • [6] On Perturbations of Generalized Landau-Lifshitz Dynamics
    Freidlin, Mark
    Hu, Wenqing
    JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (05) : 978 - 1008
  • [7] A numerical method for the Landau-Lifshitz equation with magnetostriction
    Banas, E
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (16) : 1939 - 1954
  • [8] A numerical method for the Landau-Lifshitz equation with magnetostriction
    Banas, L
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 30 - 33
  • [9] Pseudospectral Landau-Lifshitz description of magnetization dynamics
    Rockwell, Kyle
    Hirst, Joel
    Ostler, Thomas A.
    Iacocca, Ezio
    PHYSICAL REVIEW B, 2024, 109 (18)
  • [10] An Efficient and Accurate Adaptive Time-Stepping Method for the Landau-Lifshitz Equation
    Kim, Hyundong
    Kwak, Soobin
    Mohammed, Moumni
    Kang, Seungyoon
    Ham, Seokjun
    Kim, Junseok
    ALGORITHMS, 2025, 18 (01)