First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications

被引:190
|
作者
Ray, S. J. [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany
来源
关键词
Graphene; Phosphorene; Molybdenum disulfide; Chemical sensing; Single electron transistor; LAYER MOS2; ADSORPTION; MONOLAYER; MOLECULES; QUBITS;
D O I
10.1016/j.snb.2015.08.039
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Two dimensional single crystals like graphene, transition metal dichalcogenides, phosphorene, etc. can be useful for sensing applications due to their enhanced surface to volume ratio. A single electron transistor (SET) device made of such materials is proposed here as a futuristic low power device prototype for sensing purposes. The operation and performance of these SET devices are investigated for the first time using Density functional theory based Ab-initio calculations to understand their relative sensitivities towards sensing different gas molecules. The adsorption of CO, CO2, NH3 and NO2 on monolayers of graphene, MoS2 and phosphorene are investigated to find their most stable configurations and relative orientations on the host layers. The structural and electronic properties of the host layers have been found to be unaffected as a result of the adsorption processes. Phosphorene offers highest strength of physioadsorption for all these molecules, indicating its superiority than the other two materials. It is observed that Phosphorene and MoS2 are additionally sensitive towards the N-based molecules and magnetism could be induced in the presence of a paramagnetic molecule. Present results indicate that the charge stability diagram of the SET is unique for a specific gas molecule on the Two-dimensional (2D) layer and this is sensitive up to the addition/removal of a single molecule from the island. The wide temperature range of operation, extreme detection sensitivity and the versatility of the 2D materials for gas sensing make these SET devices very powerful candidates for practical application. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:492 / 498
页数:7
相关论文
共 50 条
  • [41] Normal compressive strain-induced modulation of electronic and mechanical properties of multilayer MoS2 and Graphene/MoS2 heterostructure: A first-principles study
    Ghobadi, Nayereh
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 111 : 158 - 166
  • [42] First principles study on gas sensitivity of MoS2 by Sr doping
    Li, Haixia
    Wu, Haowei
    CHEMICAL PHYSICS LETTERS, 2023, 826
  • [43] First-Principles Study of Electron Linewidths in Graphene
    Park, Cheol-Hwan
    Giustino, Feliciano
    Spataru, Catalin D.
    Cohen, Marvin L.
    Louie, Steven G.
    PHYSICAL REVIEW LETTERS, 2009, 102 (07)
  • [44] Enhanced gas sensing performance of polyaniline incorporated with graphene: A first-principles study
    Guo, Zhi
    Liao, Ningbo
    Zhang, Miao
    Feng, Aixin
    PHYSICS LETTERS A, 2019, 383 (23) : 2751 - 2754
  • [45] Adsorption and gas-sensing properties of formaldehyde on defective MoS 2 monolayers: A first-principles study
    Gao, Yawen
    Liu, Shasha
    Chen, Wenbin
    Yu, Jiangying
    Wang, Li
    Li, Ping
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 179
  • [46] First-principles study on multiphase property and phase transition of monolayer MoS2
    Zhang Li-Yong
    Fang Liang
    Peng Xiang-Yang
    ACTA PHYSICA SINICA, 2016, 65 (12)
  • [47] Electronic properties of germanene on pristine and defective MoS2: A first-principles study
    Lv, Pengfei
    Silva-Guillen, Jose Angel
    Rudenko, Alexander N.
    Yuan, Shengjun
    PHYSICAL REVIEW B, 2022, 105 (09)
  • [48] Tunable Electronic Properties of MoS2/SiC Heterostructures: A First-Principles Study
    Liu, Shu
    Li, Xiaodan
    Meng, Dongping
    Li, Shenghao
    Chen, Xiong
    Hu, Taotao
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (07) : 3714 - 3726
  • [49] Tunable Electronic Properties of MoS2/SiC Heterostructures: A First-Principles Study
    Shu Liu
    Xiaodan Li
    Dongping Meng
    Shenghao Li
    Xiong Chen
    Taotao Hu
    Journal of Electronic Materials, 2022, 51 : 3714 - 3726
  • [50] First-Principles Study of Electronic Structure, Vibrational and Dielectric Properties of MoS2
    Chen Jichao
    Liu Zhengtang
    Feng Liping
    Tan Tingting
    RARE METAL MATERIALS AND ENGINEERING, 2015, 44 (01) : 118 - 121