Observer-based synchronization of chaotic systems with unknown nonlinear function

被引:2
|
作者
Feki, Moez [1 ]
机构
[1] MECA Ecole Natl Ingenieurs Sfax, Res Unit Mechatronix & Autonomous Syst, Sfax, Tunisia
关键词
ADAPTIVE-CONTROL;
D O I
10.1016/j.chaos.2007.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the synchronization of chaotic systems using it time-delay observer. The class of systems considered herein have a known linear part and an unknown nonlinear function. The time-delay observer uses a linear gain to synchronize and it time-delay estimation to estimate the nonlinear function. To demonstrate the advantages of this scheme we present numerical simulations to synchronize double-scroll and three-scroll Chua's Systems. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:981 / 990
页数:10
相关论文
共 50 条
  • [31] Observer-based Stabilization for a Class of Chaotic Systems in the Presence of Disturbance and Nonlinear Function: an LMI Approach
    Lashkari, Marzieh
    Karami, Hamede
    Mobayen, Saleh
    Bayat, Farhad
    [J]. 2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 1050 - 1054
  • [32] Analytical design of the observer-based chaotic generalized synchronization
    Li, GH
    [J]. ACTA PHYSICA SINICA, 2004, 53 (04) : 999 - 1002
  • [33] Observer-based impulsive chaotic synchronization of discrete-time switched systems
    Zhigang Zhang
    Xinzhi Liu
    [J]. Nonlinear Dynamics, 2010, 62 : 781 - 789
  • [34] Convergence rate of observer-based approach for chaotic synchronization
    Alvarez-Ramirez, J
    Puebla, H
    Cervantes, I
    [J]. PHYSICS LETTERS A, 2001, 289 (4-5) : 193 - 198
  • [35] Chaotic observer-based synchronization under information constraints
    Fradkov, Alexander L.
    Andrievsky, Boris
    Evans, Robin J.
    [J]. PHYSICAL REVIEW E, 2006, 73 (06):
  • [36] Observer-based sliding mode control for synchronization of delayed chaotic neural networks with unknown disturbance
    Zhao, Yongshun
    Li, Xiaodi
    Duan, Peiyong
    [J]. NEURAL NETWORKS, 2019, 117 : 268 - 273
  • [37] Observer-based synchronization scheme for a class of chaotic systems using contraction theory
    Sharma, B. B.
    Kar, I. N.
    [J]. NONLINEAR DYNAMICS, 2011, 63 (03) : 429 - 445
  • [38] Robust H∞ Observer-Based Synchronization for a Class of Incommensurate Fractional Chaotic Systems
    Wang Baojin
    Zhao Linhui
    Liu Zhiyuan
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10532 - 10537
  • [39] An adaptive fuzzy observer-based approach for chaotic synchronization
    Ting, CS
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2005, 39 (01) : 97 - 114
  • [40] Observer-based adaptive synchronization of uncertain time-delay chaotic systems
    Xiao, Xiao-Shi
    Pan, Changzhong
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 3321 - 3324