A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space

被引:4
|
作者
Gala, Sadek [1 ,2 ]
Ragusa, Maria Alessandra [2 ]
机构
[1] Univ Mostaganem, Dept Math, Box 227, Mostaganem 27000, Algeria
[2] Univ Catania, Dipartimento Matematicae Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
来源
AIMS MATHEMATICS | 2017年 / 2卷 / 01期
关键词
MHD equations; regularity criteria; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; TERMS; PRESSURE; INEQUALITIES;
D O I
10.3934/Math.2017.1.16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will establish a sufficient condition for the regularity criterion to the 3D MHD equation in terms of the derivative of the pressure in one direction. It is shown that if the partial derivative of the pressure partial derivative(3)pi satisfies the logarithmical Serrin type condition partial derivative(3)pi satisfies the logarithmical Serrin type condition. integral(T)(0) parallel to partial derivative(3)pi(s)parallel to M-2,3/r(2/2-r) / 1 + ln ( 1+ parallel to b(s)parallel to(L4)) ds < infinity for 0 < r < 1; then the solution (u; b) remains smooth on [0; T]. Compared to the Navier-Stokes result, there is a logarithmic correction involving b in the denominator.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 50 条