A Scalable Sparse Matrix-Based Join for SPARQL Query Processing

被引:3
|
作者
Zhang, Xiaowang [1 ,2 ]
Zhang, Mingyue [1 ,2 ]
Peng, Peng [3 ]
Song, Jiaming [1 ,2 ]
Feng, Zhiyong [1 ,2 ]
Zou, Lei [4 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
[2] Tianjin Key Lab Cognit Comp & Applicat, Tianjin, Peoples R China
[3] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Hunan, Peoples R China
[4] Peking Univ, Inst Comp Sci & Technol, Beijing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-030-18590-9_77
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present gSMat, a SPARQL query engine for RDF datasets. It employs join optimization and data sparsity. We bifurcate gSMat into three submodules e.g. Firstly, SM Storage (Sparse Matrix-based Storage) which lifts the storage efficiency, by storing valid edges, introduces a predicate-based hash index on the storage and generate a statistic file for optimization. Secondly, Query Planner which holds Query Parser and Query Optimizer. The Query Parser module parses a SPARQL query and transformed it into a query graph and the latter generates the optimal query plan based on statistical input from SM Storage. Thirdly, Query Executor module executes query in an efficient manner. Lastly, gSMat evaluated by comparing with some well-known approaches like gStore and RDF3X on very large datasets (over 500 million triples). gSMat is proved as significantly efficient and scalable.
引用
收藏
页码:510 / 514
页数:5
相关论文
共 50 条
  • [31] ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints
    Acosta, Maribel
    Vidal, Maria-Esther
    Lampo, Tomas
    Castillo, Julio
    Ruckhaus, Edna
    [J]. SEMANTIC WEB - ISWC 2011, PT I, 2011, 7031 : 18 - +
  • [32] Towards Efficient SPARQL Query Processing on RDF Data
    刘畅
    王昊奋
    俞勇
    徐林昊
    [J]. Tsinghua Science and Technology, 2010, 15 (06) : 613 - 622
  • [33] DFTB+, a sparse matrix-based implementation of the DFTB method
    Aradi, B.
    Hourahine, B.
    Frauenheim, Th.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26): : 5678 - 5684
  • [34] A Sparse Matrix-Based Method for Rapid Solving the Reynolds Equation
    He, Ke
    Chen, Shi
    Zhang, Zhinan
    [J]. JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (05):
  • [35] CS*: Approximate Query Processing on Big Data using Scalable Join Correlated Sample Synopsis
    Yu, Feng
    Hou, Wen-Chi
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 583 - 592
  • [36] An efficient and scalable SPARQL query processing framework for big data using MapReduce and hybrid optimum load balancing
    Kumar, V. Naveen
    Kumar, P. S. Ashok
    [J]. DATA & KNOWLEDGE ENGINEERING, 2023, 148
  • [37] Matrix-Based XML Stream Processing Using a GPU
    Kim, Soo-Hyung
    Lee, Yoon-Joon
    Lee, John Jaehwan
    [J]. 2015 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2015, 2015, : 694 - 697
  • [38] Scalable Distributed Stream Join Processing
    Lin, Qian
    Ooi, Beng Chin
    Wang, Zhengkui
    Yu, Cui
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 811 - 825
  • [39] Optimizing SPARQL Query Processing on Dynamic and Static Data Based on Query Time/Freshness Requirements Using Materialization
    Dehghanzadeh, Soheila
    Parreira, Josiane Xavier
    Karnstedt, Marcel
    Umbrich, Juergen
    Hauswirth, Manfred
    Decker, Stefan
    [J]. SEMANTIC TECHNOLOGY (JIST 2014), 2015, 8943 : 257 - 270
  • [40] Proactive Plan-Based Continuous Query Processing over Diverse SPARQL Endpoints
    Chun, Sejin
    Seo, Seungmin
    Ro, Wonwoo
    Lee, Kyong-Ho
    [J]. 2015 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT), VOL 1, 2015, : 161 - 164