A Scalable Sparse Matrix-Based Join for SPARQL Query Processing

被引:3
|
作者
Zhang, Xiaowang [1 ,2 ]
Zhang, Mingyue [1 ,2 ]
Peng, Peng [3 ]
Song, Jiaming [1 ,2 ]
Feng, Zhiyong [1 ,2 ]
Zou, Lei [4 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
[2] Tianjin Key Lab Cognit Comp & Applicat, Tianjin, Peoples R China
[3] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Hunan, Peoples R China
[4] Peking Univ, Inst Comp Sci & Technol, Beijing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-030-18590-9_77
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present gSMat, a SPARQL query engine for RDF datasets. It employs join optimization and data sparsity. We bifurcate gSMat into three submodules e.g. Firstly, SM Storage (Sparse Matrix-based Storage) which lifts the storage efficiency, by storing valid edges, introduces a predicate-based hash index on the storage and generate a statistic file for optimization. Secondly, Query Planner which holds Query Parser and Query Optimizer. The Query Parser module parses a SPARQL query and transformed it into a query graph and the latter generates the optimal query plan based on statistical input from SM Storage. Thirdly, Query Executor module executes query in an efficient manner. Lastly, gSMat evaluated by comparing with some well-known approaches like gStore and RDF3X on very large datasets (over 500 million triples). gSMat is proved as significantly efficient and scalable.
引用
收藏
页码:510 / 514
页数:5
相关论文
共 50 条
  • [1] SMat-J: A Sparse Matrix-Based Join for SPARQL Query Processing
    Sun, Ximin
    Liu, Ming
    Wang, Shuai
    Li, Xiaoming
    Zheng, Bin
    Liu, Dan
    Yu, Hongshen
    [J]. WEB AND BIG DATA, 2021, 1505 : 16 - 26
  • [2] RDF partitioning for scalable SPARQL query processing
    Xiaoyan WANG
    Tao YANG
    Jinchuan CHEN
    Long HE
    Xiaoyong DU
    [J]. Frontiers of Computer Science., 2015, 9 (06) - 933
  • [3] RDF partitioning for scalable SPARQL query processing
    Wang, Xiaoyan
    Yang, Tao
    Chen, Jinchuan
    He, Long
    Du, Xiaoyong
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2015, 9 (06) : 919 - 933
  • [4] RDF partitioning for scalable SPARQL query processing
    Xiaoyan Wang
    Tao Yang
    Jinchuan Chen
    Long He
    Xiaoyong Du
    [J]. Frontiers of Computer Science, 2015, 9 : 919 - 933
  • [5] Efficient and Scalable SPARQL Query Processing with Transformed Table
    Huang, Sheng-Wei
    Yu, Chia-Ho
    Shieh, Ce-Kuen
    Tsai, Ming-Fong
    [J]. 2015 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2015, : 103 - 106
  • [6] SigMR: MapReduce-based SPARQL query processing by signature encoding and multi-way join
    Jinhyun Ahn
    Dong-Hyuk Im
    Hong-Gee Kim
    [J]. The Journal of Supercomputing, 2015, 71 : 3695 - 3725
  • [7] SigMR: MapReduce-based SPARQL query processing by signature encoding and multi-way join
    Ahn, Jinhyun
    Im, Dong-Hyuk
    Kim, Hong-Gee
    [J]. JOURNAL OF SUPERCOMPUTING, 2015, 71 (10): : 3695 - 3725
  • [8] Input-Sensitive Scalable Continuous Join Query Processing
    Agarwal, Pankaj K.
    Xie, Junyi
    Yang, Jun
    Yu, Hai
    [J]. ACM TRANSACTIONS ON DATABASE SYSTEMS, 2009, 34 (03):
  • [9] Flexible Query Processing for SPARQL
    Frosini, Riccardo
    Cali, Andrea
    Poulovassilis, Alexandra
    Wood, Peter T.
    [J]. SEMANTIC WEB, 2017, 8 (04) : 533 - 564
  • [10] Sparse Matrix-Based HPC Tomography
    Marchesini, Stefano
    Trivedi, Anuradha
    Enfedaque, Pablo
    Perciano, Talita
    Parkinson, Dilworth
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT I, 2020, 12137 : 248 - 261