Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density

被引:33
|
作者
Shang, Han Lin [1 ]
机构
[1] Australian Natl Univ, Res Sch Finance Actuarial Studies & Appl Stat, Canberra, ACT 0200, Australia
关键词
functional Nadaraya-Watson estimator; kernel density estimation; Markov chain Monte Carlo; mixture error density; spectroscopy; TIME-SERIES PREDICTION; MARGINAL LIKELIHOOD; UNIFORM CONSISTENCY; DISCRIMINATION;
D O I
10.1080/10485252.2014.916806
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the issue of bandwidth estimation in a functional nonparametric regression model with function-valued, continuous real-valued and discrete-valued regressors under the framework of unknown error density. Extending from the recent work of Shang (2013) ['Bayesian Bandwidth Estimation for a Nonparametric Functional Regression Model with Unknown Error Density', Computational Statistics & Data Analysis, 67, 185-198], we approximate the unknown error density by a kernel density estimator of residuals, where the regression function is estimated by the functional Nadaraya-Watson estimator that admits mixed types of regressors. We derive a likelihood and posterior density for the bandwidth parameters under the kernel-form error density, and put forward a Bayesian bandwidth estimation approach that can simultaneously estimate the bandwidths. Simulation studies demonstrated the estimation accuracy of the regression function and error density for the proposed Bayesian approach. Illustrated by a spectroscopy data set in the food quality control, we applied the proposed Bayesian approach to select the optimal bandwidths in a functional nonparametric regression model with mixed types of regressors.
引用
收藏
页码:599 / 615
页数:17
相关论文
共 47 条
  • [21] A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation
    George Karabatsos
    [J]. Behavior Research Methods, 2017, 49 : 335 - 362
  • [22] A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation
    Karabatsos, George
    [J]. BEHAVIOR RESEARCH METHODS, 2017, 49 (01) : 335 - 362
  • [23] Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data
    Kiesse, Tristan Senga
    Zougab, Nabil
    Kokonendji, Celestin C.
    [J]. COMPUTATIONAL STATISTICS, 2016, 31 (01) : 189 - 206
  • [24] Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data
    Tristan Senga Kiessé
    Nabil Zougab
    Célestin C. Kokonendji
    [J]. Computational Statistics, 2016, 31 : 189 - 206
  • [25] BAYESIAN ERROR ESTIMATION AND MODEL SELECTION IN SPARSE LOGISTIC REGRESSION
    Huttunen, Heikki
    Manninen, Tapio
    Tohka, Jussi
    [J]. 2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [26] SOME ASPECTS OF BAYESIAN NONPARAMETRIC INFERENCE UNDER DENSITY ESTIMATION, REGRESSION AND SURVIVAL MODELS
    Kumar, Shailendra
    Pandey, Anshula
    Sehgal, V. K.
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2018, 14 (02): : 627 - 635
  • [27] Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator
    Chamidah, Nur
    Lestari, Budi
    Budiantara, I. Nyoman
    Aydin, Dursun
    [J]. SYMMETRY-BASEL, 2024, 16 (04):
  • [28] Bayesian density estimation and model selection using nonparametric hierarchical mixtures
    Argiento, Raffaele
    Guglielmi, Alessandra
    Pievatolo, Antonio
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 816 - 832
  • [29] Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors
    Kulik, Rafal
    Wichelhaus, Cornelia
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 856 - 898
  • [30] On the Nonparametric Estimation of the Functional ψ-Regression for a Random Left-Truncation Model
    Derrar S.
    Laksaci A.
    Ould Said E.
    [J]. Journal of Statistical Theory and Practice, 2015, 9 (4) : 823 - 849