Fimbriated Salmonella enterica serovar typhimurium abates initial inflammatory responses by macrophages

被引:31
|
作者
Pascual, DW [1 ]
Trunkle, T [1 ]
Sura, J [1 ]
机构
[1] Montana State Univ, Bozeman, MT 59717 USA
关键词
D O I
10.1128/IAI.70.8.4273-4281.2002
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Oral immunization of mice with a Salmonella vaccine expressing colonization factor antigen I (CFA/I) from enterotoxigenic Escherichia coli results in the rapid onset of interleukin-4 (IL-4) and IL-5 production, which explains the observed elevations in mucosal immunoglobulin A (IgA) and serum IgG1 antibodies. In contrast, oral immunization with the Salmonella vector does not result in the production of Th2-type cytokines. To begin to assess why such differences exist between the two strains, it should be noted that in vitro infection of RAW 264.7 macrophages resulted in the absence of nitric oxide (NO) production in cells infected with the Salmonella-CFA/I vaccine. This observation suggests differential proinflammatory cytokine production by these isogenic Salmonella strains. Upon measurement of proinflammatory cytokines, minimal to no tumor necrosis factor alpha (TNIF-alpha), IL-1alpha, IL-1beta, or IL-6 was produced by Salmonella-CFA/I-infected RAW 264.7 or peritoneal macrophages, but production was greatly induced in Salmonella vector-infected macrophages. Only minute levels of IL-12 p70 were induced by Salmonella vector-infected macrophages, and none was induced by Salmonella-CFA/I-infected macrophages. The absence of IL-12 was not due to overt increases in production of either IL-12 p40 or IL-10. CFU measurements taken at 8 h postinfection showed no differences in colonization in RAW 264.7 cells infected with either Salmonella construct, but there were differences in peritoneal macrophages. However, after 24 h, the Salmonella vector strain colonized to a greater extent in RAW 264.7 cells than in peritoneal macrophages. Infection of RAW 264.7 cells or peritoneal macrophages with either Salmonella construct showed no difference in macrophage viabilities. This evidence shows that the expression of CFA/I fimbriae alters how macrophages recognize or process salmonellae and prevents the rapid onset of proinflammatory cytokines which is typical during Salmonella infections.
引用
收藏
页码:4273 / 4281
页数:9
相关论文
共 50 条
  • [21] Molecular typing and evolution of Salmonella enterica serovar Typhimurium
    Hu, Honghua
    MICROBIOLOGY AUSTRALIA, 2005, 26 (01) : 43 - 43
  • [22] Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation
    Anderson, Christopher J.
    Kendall, Melissa M.
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [23] Interactions of Salmonella enterica subspecies enterica serovar Typhimurium with gut bacteria
    Avendano-Perez, Gaspar
    Nueno-Palop, Carmen
    Narbad, Arjan
    George, Susan M.
    Baranyi, Jozsef
    Pin, Carmen
    ANAEROBE, 2015, 33 : 90 - 97
  • [24] Identification of the σE regulon of Salmonella enterica serovar Typhimurium
    Skovierova, Henrieta
    Rowley, Gary
    Rezuchova, Bronislava
    Homerova, Dagmar
    Lewis, Claire
    Roberts, Mark
    Kormanec, Jan
    MICROBIOLOGY-SGM, 2006, 152 : 1347 - 1359
  • [25] Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium
    Nakyeong Ha
    Eun-Jin Lee
    Journal of Microbiology, 2023, 61 : 289 - 296
  • [26] Characterization of cellulose produced by Salmonella enterica serovar Typhimurium
    Ute Römling
    Heinrich Lünsdorf
    Cellulose, 2004, 11 : 413 - 418
  • [27] Deletion of Salmonella enterica serovar typhimurium sipC gene
    Maryam Safarpour Dehkordi
    Abbas Doosti
    Asghar Arshi
    Asian Pacific Journal of Tropical Biomedicine, 2015, (12) : 987 - 991
  • [28] Regulation of biofilm formation in Salmonella enterica serovar Typhimurium
    Simm, Roger
    Ahmad, Irfan
    Rhen, Mikael
    Le Guyon, Soazig
    Romling, Ute
    FUTURE MICROBIOLOGY, 2014, 9 (11) : 1261 - 1282
  • [29] Changes in antimicrobial resistance in Salmonella enterica serovar Typhimurium
    Angulo, FJ
    Griffin, PM
    EMERGING INFECTIOUS DISEASES, 2000, 6 (04) : 436 - 437
  • [30] Aspartic peptide hydrolases in Salmonella enterica serovar typhimurium
    Larsen, RA
    Knox, TM
    Miller, CG
    JOURNAL OF BACTERIOLOGY, 2001, 183 (10) : 3089 - 3097