Spatio-Temporal Laplacian Pyramid Coding for Action Recognition

被引:192
|
作者
Shao, Ling [1 ,2 ]
Zhen, Xiantong [2 ]
Tao, Dacheng [3 ,4 ]
Li, Xuelong [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Elect & Informat Engn, Nanjing 210044, Jiangsu, Peoples R China
[2] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
[3] Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
[4] Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
[5] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; computer vision; max pooling; spatio-temporal Laplacian pyramid; FEATURES; CONTEXT; MODEL;
D O I
10.1109/TCYB.2013.2273174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel descriptor, called spatio-temporal Laplacian pyramid coding (STLPC), for holistic representation of human actions. In contrast to sparse representations based on detected local interest points, STLPC regards a video sequence as a whole with spatio-temporal features directly extracted from it, which prevents the loss of information in sparse representations. Through decomposing each sequence into a set of band-pass-filtered components, the proposed pyramid model localizes features residing at different scales, and therefore is able to effectively encode the motion information of actions. To make features further invariant and resistant to distortions as well as noise, a bank of 3-D Gabor filters is applied to each level of the Laplacian pyramid, followed by max pooling within filter bands and over spatio-temporal neighborhoods. Since the convolving and pooling are performed spatio-temporally, the coding model can capture structural and motion information simultaneously and provide an informative representation of actions. The proposed method achieves superb recognition rates on the KTH, the multiview IXMAS, the challenging UCF Sports, and the newly released HMDB51 datasets. It outperforms state of the art methods showing its great potential on action recognition.
引用
收藏
页码:817 / 827
页数:11
相关论文
共 50 条
  • [31] Spatio-temporal Contrastive Domain Adaptation for Action Recognition
    Song, Xiaolin
    Zhao, Sicheng
    Yang, Jingyu
    Yue, Huanjing
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9782 - 9790
  • [32] Spatio-Temporal Contrastive Learning for Compositional Action Recognition
    Gong, Yezi
    Pei, Mingtao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VII, 2025, 15037 : 424 - 438
  • [33] Human Action Recognition Using Spatio-temporal Classification
    Fang, Chin-Hsien
    Chen, Ju-Chin
    Tseng, Chien-Chung
    Lien, Jenn-Jier James
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 98 - 109
  • [34] Spatio-Temporal Attention Networks for Action Recognition and Detection
    Li, Jun
    Liu, Xianglong
    Zhang, Wenxuan
    Zhang, Mingyuan
    Song, Jingkuan
    Sebe, Nicu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2990 - 3001
  • [35] Hierarchical Spatio-Temporal Context Modeling for Action Recognition
    Sun, Ju
    Wu, Xiao
    Yan, Shuicheng
    Cheong, Loong-Fah
    Chua, Tat-Seng
    Li, Jintao
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2004 - +
  • [36] Human Action Recognition Based on Spatio-temporal Features
    Sawant, Nikhil
    Biswas, K. K.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 357 - 362
  • [37] Spatio-Temporal Adaptive Network With Bidirectional Temporal Difference for Action Recognition
    Li, Zhilei
    Li, Jun
    Ma, Yuqing
    Wang, Rui
    Shi, Zhiping
    Ding, Yifu
    Liu, Xianglong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 5174 - 5185
  • [38] Spatio-Temporal Action Localization for Human Action Recognition in Large Dataset
    Megrhi, Sameh
    Jmal, Marwa
    Beghdadi, Azeddine
    Mseddi, Wided
    VIDEO SURVEILLANCE AND TRANSPORTATION IMAGING APPLICATIONS 2015, 2015, 9407
  • [39] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Wu, Qianhan
    Huang, Qian
    Li, Xing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 16409 - 16430
  • [40] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Qianhan Wu
    Qian Huang
    Xing Li
    Multimedia Tools and Applications, 2023, 82 : 16409 - 16430