Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process

被引:24
|
作者
Rasheed, Raj Kama Abdul [1 ]
Ehteshami, Seyyed Mohsen Mousavi [1 ]
Chan, Siew Hwa [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
关键词
HT-PEMFC; Boiling phase change; Warm-up; Heating strategy; Analytical model; COLD START; ELECTRODE-KINETICS; OXYGEN REDUCTION; WATER; MULTIPHASE; DESORPTION; DEPENDENCE; INTERFACE; CATHODE;
D O I
10.1016/j.ijhydene.2013.11.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper investigates the thermal and water balance as well as the electro-kinetics during the warm-up process of a Hydrogen/Oxygen high-temperature proton exchange membrane fuel cell (HT-PEMFC) from room temperature up to the desired temperature of 180 degrees C. The heating strategy involves the extraction of constant current from the fuel cell, while an external heating source with a constant heat input rate is applied at the end plates of the cell simultaneously. A simple analytical unsteady model is derived addressing the boiling phase changing phenomenon in the cathode catalyst layer (CCL) and cathode gas diffusion layer (CGDL) of the cathode that occurs when the temperature of the fuel cell reaches the boiling temperature of water. Parameters such as the heat input rate, extracted current, cathode pressure and cathode stoichiometric flow ratio are varied and their effects on the temperature, liquid water fraction and most importantly, the voltage profiles with respect to time, are explored. A comparison between other existing heating strategies using the model suggests that there is insignificant improvement in warm-up time when current is extracted from room temperature considering a single cell. However, considering the solution for a typical 1-kW stack suggests that reductions in warm-up time and energy consumption can be expected. In addition, the results show that boiling phase change is found to be a key factor that affects the level of water saturation in the porous media such as the CCL and CGDL during the warm-up process, when current is extracted from the start of the process i.e. room temperature. However, the energy consumption due to boiling phase change is found to be negligible as compared to external heating input rate. The parametric studies show that the variation of heat input rate, extracted current and cathode pressure have significant effect on the cell voltage that is strongly dominated by the liquid water fraction in the porous media. On the other hand, the variation of cathode stoichiometric flow ratio is found to have minimal effect on the output cell voltage. The parametric studies also indicate that boiling phase change is present for a significant period of time under typical operating conditions. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2246 / 2260
页数:15
相关论文
共 50 条
  • [31] Dynamic modeling of a high-temperature proton exchange membrane fuel cell with a fuel processor
    Park, Jaeman
    Min, Kyoungdoug
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) : 10683 - 10696
  • [32] Perspectives on Membrane Development for High Temperature Proton Exchange Membrane Fuel Cells
    Ying, Jiadi
    Liu, Tiancun
    Wang, Yeqing
    Guo, Min
    Shen, Qi
    Lin, Yuqing
    Yu, Jianguo
    Yu, Zhixin
    ENERGY & FUELS, 2024, 38 (08) : 6613 - 6643
  • [33] A new type of high temperature membrane for proton exchange membrane fuel cells
    Shi, Jinjun
    Guo, Jiusheng
    Jang, Bor
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, PTS A AND B, 2006, : 1019 - 1022
  • [34] Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives
    Qu, Erli
    Hao, Xiaofeng
    Xiao, Min
    Han, Dongmei
    Huang, Sheng
    Huang, Zhiheng
    Wang, Shuanjin
    Meng, Yuezhong
    JOURNAL OF POWER SOURCES, 2022, 533
  • [35] Ionomeric Binders for High Temperature Proton Exchange Membrane Fuel Cells
    Xing, Ruiyang
    Yu, Yaqin
    Li, Nanwen
    Geng, Kang
    Tang, Hongying
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (70)
  • [36] A review of the development of high temperature proton exchange membrane fuel cells
    Authayanun, Suthida
    Im-Orb, Karittha
    Arpornwichanop, Amornchai
    CHINESE JOURNAL OF CATALYSIS, 2015, 36 (04) : 473 - 483
  • [37] Prolongation of lifetime of high temperature proton exchange membrane fuel cells
    Oono, Yuka
    Sounai, Atsuo
    Hori, Michio
    JOURNAL OF POWER SOURCES, 2013, 241 : 87 - 93
  • [38] Sensitivity analysis of anode overpotential during start-up process of a high temperature proton exchange membrane fuel cell
    Kamal, Raj
    Chan, Siew Hwa
    ELECTROCHIMICA ACTA, 2015, 176 : 965 - 975
  • [39] Exergy Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Systems
    Ye, Lin
    Jiao, Kui
    Du, Qing
    Yin, Yan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2015, 12 (09) : 917 - 929
  • [40] A high performance polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange membrane fuel cells
    Du, He-Yun
    Wang, Chen-Hao
    Yang, Chen-Shuan
    Hsu, Hsin-Cheng
    Chang, Sun-Tang
    Huang, Hsin-Chih
    Lai, Shiau-Wu
    Chen, Jyh-Chien
    Yu, T. Leon
    Chen, Li-Chyong
    Chen, Kuei-Hsien
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (19) : 7015 - 7019