Congruences between modular forms: Raising the level and dropping Euler factors

被引:8
|
作者
Diamond, F
机构
[1] Dept. of Pure Math. and Math. Stat., University of Cambridge, Cambridge CB2 1SB
关键词
D O I
10.1073/pnas.94.21.11143
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss the relationship among certain generalizations of results of Hida, Ribet, and Wiles on congruences between modular forms. Hida's result accounts for congruences in terms of the value of anl-function, and Ribet's result is related to the behavior of the period that appears there, Wiles' theory leads to a class number formula relating the value of the L-function to the size of a Galois cohomology group. The behavior of the period is used to deduce that a formula at ''nonminimal level'' is obtained from one at ''minimal level'' by dropping Euler factors from the L-function.
引用
收藏
页码:11143 / 11146
页数:4
相关论文
共 50 条
  • [21] CONGRUENCES BETWEEN HILBERT MODULAR FORMS: CONSTRUCTING ORDINARY LIFTS
    Barnet-Lamb, Thomas
    Gee, Toby
    Geraghty, David
    DUKE MATHEMATICAL JOURNAL, 2012, 161 (08) : 1521 - 1580
  • [22] Non-Existence of Ramanujan Congruences in Modular Forms of Level Four
    Dewar, Michael
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (06): : 1284 - 1306
  • [23] Level raising for p-adic Hilbert modular forms
    Newton, James
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2016, 28 (03): : 621 - 653
  • [24] Congruences for Siegel modular forms and their weights
    Boecherer, Siegfried
    Nagaoka, Shoyu
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2010, 80 (02): : 227 - 231
  • [25] CONGRUENCES FOR PERIODS OF MODULAR-FORMS
    KOBLITZ, N
    DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) : 361 - 373
  • [26] CONGRUENCES OF MODULAR FORMS AND THE IWASAWA λ-INVARIANTS
    Hirano, Yuichi
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2018, 146 (01): : 1 - 79
  • [27] Congruences for Siegel modular forms and their weights
    Siegfried Böcherer
    Shoyu Nagaoka
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2010, 80 : 227 - 231
  • [28] Modular forms, hypergeometric functions and congruences
    Kazalicki, Matija
    RAMANUJAN JOURNAL, 2014, 34 (01): : 1 - 9
  • [29] Lucas congruences using modular forms
    Beukers, Frits
    Tsai, Wei-Lun
    Ye, Dongxi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (01) : 69 - 78
  • [30] RAMANUJAN CONGRUENCES FOR SIEGEL MODULAR FORMS
    Dewar, Michael
    Richter, Olav K.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (07) : 1677 - 1687