The Parallel Approach to the Conjugate Gradient Learning Algorithm for the Feedforward Neural Networks

被引:28
|
作者
Bilski, Jaroslaw [1 ]
Smolag, Jacek [1 ]
Galushkin, Alexander I. [2 ]
机构
[1] Czestochowa Tech Univ, Inst Computat Intelligence, Czestochowa, Poland
[2] Moscow Inst Phys & Technol, Moscow, Russia
关键词
REALIZATION;
D O I
10.1007/978-3-319-07173-2_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the parallel architecture of the conjugate gradient learning algorithm for the feedforward neural networks. The proposed solution is based on the high parallel structures to speed up learning performance. Detailed parallel neural network structures are explicitly shown.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 50 条
  • [11] A general backpropagation algorithm for feedforward neural networks learning
    Yu, XH
    Efe, MO
    Kaynak, O
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (01): : 251 - 254
  • [12] ANEFFICIENT LEARNING ALGORITHM FOR BINARY FEEDFORWARD NEURAL NETWORKS
    Zhou, Jianxin
    Zeng, Xiaoqin
    Chan, Patrick P. K.
    [J]. PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOL. 2, 2015, : 609 - 615
  • [13] LEARNING ALGORITHM FOR FEEDFORWARD NEURAL NETWORKS WITH DISCRETE SYNAPSES
    VICENTE, CJP
    CARRABINA, J
    GARRIDO, F
    VALDERRAMA, E
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 540 : 144 - 152
  • [14] A learning algorithm for fault tolerant feedforward neural networks
    Hammadi, C
    Ito, H
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1997, E80D (01) : 21 - 27
  • [15] An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
    Nawi, N. M.
    Ransing, M. R.
    Ransing, R. S.
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 211 - +
  • [16] Implementation of Kolmogorov learning algorithm for feedforward neural networks
    Neruda, R
    Stedry, A
    Drkosová, J
    [J]. COMPUTATIONAL SCIENCE -- ICCS 2001, PROCEEDINGS PT 2, 2001, 2074 : 986 - 995
  • [17] A fast learning algorithm for training feedforward neural networks
    Goel, Ashok Kumar
    Saxena, Suresh C.
    Bhanot, Surekha
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2006, 37 (10) : 709 - 722
  • [18] Parallel Learning of Feedforward Neural Networks Without Error Backpropagation
    Bilski, Jaroslaw
    Wilamowski, Bogdan M.
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2016, 2016, 9692 : 57 - 69
  • [19] Bayesian multioutput feedforward neural networks comparison: A conjugate prior approach
    Rossi, V
    Vila, JP
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (01): : 35 - 47
  • [20] Harmonic detection using neural networks with conjugate gradient algorithm
    Yumusak, N
    Temurtas, F
    Gunturkun, R
    [J]. ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, PROCEEDINGS, 2004, 3192 : 304 - 311