A class of idempotent semirings

被引:0
|
作者
Sen, MK
Guo, YQ
Shum, KP
机构
[1] Univ Calcutta, Dept Math, Calcutta, W Bengal, India
[2] Dept Math, Kunming 650091, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The least lattice congruence on a semiring always contains the least semilattice congruence on the additive reduct. We shall investigate the class of all idempotent semirings for which these two congruences coincide. We find that this class of semirings forms a variety and specify several systems of identities which determine this variety. Various structural characterizations for the semirings which belong to this variety are given. Noticeable among these are the characterizations in terms of the natural partial orders or in terms of the D-relations of the two reducts. We identify important subvarieties and give structure theorems for special types of such semirings.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 50 条
  • [21] Idempotent semirings with a commutative additive reduct
    Zhao, XZ
    SEMIGROUP FORUM, 2002, 64 (02) : 289 - 296
  • [22] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [23] Non-termination in idempotent semirings
    Hoefner, Peter
    Struth, Georg
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 206 - 220
  • [24] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [25] Idempotent semirings with a commutative additive reduct
    Xianzhong Zhao
    Semigroup Forum, 2002, 64 : 289 - 296
  • [26] Finite simple additively idempotent semirings
    Kendziorra, Andreas
    Zumbraegel, Jens
    JOURNAL OF ALGEBRA, 2013, 388 : 43 - 64
  • [27] On a variety of commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Semigroup Forum, 2017, 94 : 610 - 617
  • [28] IDEMPOTENT DISTRIBUTIVE SEMIRINGS .2.
    PASTIJN, F
    SEMIGROUP FORUM, 1983, 26 (1-2) : 151 - 166
  • [29] Congruence-simple multiplicatively idempotent semirings
    Kepka, Tomas
    Korbelar, Miroslav
    Landsmann, Guenter
    ALGEBRA UNIVERSALIS, 2023, 84 (02)
  • [30] Proper/Residually-Finite Idempotent Semirings
    Griffing, Gary
    SEMIGROUP FORUM, 2013, 86 (03) : 486 - 510