A class of idempotent semirings

被引:0
|
作者
Sen, MK
Guo, YQ
Shum, KP
机构
[1] Univ Calcutta, Dept Math, Calcutta, W Bengal, India
[2] Dept Math, Kunming 650091, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The least lattice congruence on a semiring always contains the least semilattice congruence on the additive reduct. We shall investigate the class of all idempotent semirings for which these two congruences coincide. We find that this class of semirings forms a variety and specify several systems of identities which determine this variety. Various structural characterizations for the semirings which belong to this variety are given. Noticeable among these are the characterizations in terms of the natural partial orders or in terms of the D-relations of the two reducts. We identify important subvarieties and give structure theorems for special types of such semirings.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 50 条
  • [1] A class of idempotent semirings
    Sen M.K.
    Guo Y.Q.
    Shum K.P.
    Semigroup Forum, 2000, 60 (3) : 351 - 367
  • [2] THE ZELEZNIKOW PROBLEM ON A CLASS OF ADDITIVELY IDEMPOTENT SEMIRINGS
    Shao, Yong
    Crvenkovic, Sinisa
    Mitrovic, Melanija
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 95 (03) : 404 - 420
  • [3] Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 634 - 653
  • [4] MULTIPLICATIVELY IDEMPOTENT SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    Svrcek, Filip
    MATHEMATICA BOHEMICA, 2015, 140 (01): : 35 - 42
  • [5] FULLY IDEMPOTENT SEMIRINGS
    AHSAN, J
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (06) : 185 - 188
  • [6] A Note on Idempotent Semirings
    Durcheva, Mariana
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789
  • [7] Weak commutativity in idempotent semirings
    Pastijn, F
    SEMIGROUP FORUM, 2006, 72 (02) : 283 - 311
  • [8] Weak Commutativity in Idempotent Semirings
    F. Pastijn
    Semigroup Forum, 2006, 72 : 283 - 311
  • [9] Idempotent distributive semirings with involution
    Dolinka, I
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2003, 13 (05) : 597 - 625
  • [10] ℒ-subvarieties of the variety of idempotent semirings
    Xianzhong Z.
    Shum K.P.
    Guo Y.Q.
    algebra universalis, 2001, 46 (1) : 75 - 96