Attention based spatiotemporal graph attention networks for traffic flow forecasting

被引:53
|
作者
Wang, Yi [1 ]
Jing, Changfeng [1 ]
Xu, Shishuo [1 ]
Guo, Tao [2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Geomatics & Urban Spatial Informat, Beijing, Peoples R China
[2] Sichuan Acad Agr Sci, Inst Remote Sensing Applicat, Chengdu 610066, Peoples R China
基金
北京市自然科学基金;
关键词
Traffic flow forecasting; Spatiotemporal graph neural network; Network deepening; Network degradation; Dynamic spatiotemporal correlation; Intelligent transportation systems; CONVOLUTIONAL NETWORK; PREDICTION; SYSTEM;
D O I
10.1016/j.ins.2022.05.127
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow forecasting is a crucial task in transportation and necessary for congestion mitigation, traffic control, and intelligent traffic management. Deep learning models can aid in high-accuracy traffic flow forecasting; however, the current research focuses only the ability of the model to capture dynamic spatiotemporal features, and studies on the effect of deeper network layers on spatiotemporal features-a critical factor affecting traffic flow forecasting accuracy-are limited. In this paper, we propose an attention-based spatiotemporal graph attention network (ASTGAT) model designed for network degradation and over-smoothing problems to investigate in-depth spatiotemporal information. Compared to other networks, ASTGAT can capture dynamic spatiotemporal correlations in data and deepen the network to improve prediction accuracy through multiple residual convolution and high-low feature concat. ASTGAT comprises three components that separately model the temporal relationships of the recent, daily, and weekly periods. Each component stacks multiple spatiotemporal blocks constructed using the attention mechanism, dilated gated convolution, and graph attention network. The graph and temporal attention layers capture spatiotemporal information dynamically, and the graph attention layer alleviates the over-smoothing phenomenon to deepen the network. The combined utilization of the attention mechanism and dilated gated convolution layer improves the medium and long temporal span prediction ability. We validated ASTGAT using two open highway data sets, and the results demonstrated that our ASTGAT model effectively extracts in-depth spatiotemporal information and the prediction results outperform those predicted by the current eight baselines. Our research is dedicated to establishing a better scientific basis for intelligent traffic management that can assist in decision making.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:869 / 883
页数:15
相关论文
共 50 条
  • [21] Traffic Flow Prediction Model Based on Attention Spatiotemporal Graph Convolutional Network
    Sun, HongXian
    2023 3rd International Symposium on Computer Technology and Information Science, ISCTIS 2023, 2023, : 148 - 153
  • [22] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Chen, Yuguang
    Huang, Jintao
    Xu, Hongbin
    Guo, Jincheng
    Su, Linyong
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [23] Linear attention based spatiotemporal multi graph GCN for traffic flow prediction
    Yanping Zhang
    Wenjin Xu
    Benjiang Ma
    Dan Zhang
    Fanli Zeng
    Jiayu Yao
    Hongning Yang
    Zhenzhen Du
    Scientific Reports, 15 (1)
  • [24] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Yuguang Chen
    Jintao Huang
    Hongbin Xu
    Jincheng Guo
    Linyong Su
    Scientific Reports, 13
  • [25] Multi-Attention Based Spatial-Temporal Graph Convolution Networks for Traffic Flow Forecasting
    Hu, Jun
    Chen, Liyin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [26] Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1853 - 1862
  • [27] Adaptive Graph Co-Attention Networks for Traffic Forecasting
    Li, Boyu
    Guo, Ting
    Wang, Yang
    Gandomi, Amir H.
    Chen, Fang
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 263 - 276
  • [28] Attention based Graph Covolution Networks for Intelligent Traffic Flow Analysis
    Zhang, Hongxin
    Liu, Jiaxin
    Tang, Ying
    Xiong, Gang
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2020, : 558 - 563
  • [29] STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms
    Qi, Xueying
    Hu, Weijian
    Li, Baoshan
    Han, Ke
    JOURNAL OF ADVANCED TRANSPORTATION, 2023, 2023
  • [30] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Qingyong Zhang
    Wanfeng Chang
    Changwu Li
    Conghui Yin
    Yixin Su
    Peng Xiao
    Neural Computing and Applications, 2023, 35 : 21827 - 21839