On Simpson's type inequalities utilizing fractional integrals

被引:0
|
作者
Iqbal, Muhammad [1 ]
Qaisar, Shahid [2 ]
Hussain, Sabir [3 ]
机构
[1] Univ Engn & Technol, Lahore, Pakistan
[2] Comsats Inst Informat Technol, Sahiwal, Pakistan
[3] Qassim Univ, Coll Sci, Dept Math, POB 6644, Buraydah 51482, Saudi Arabia
关键词
Simpson's Inequality; Convex Functions; Power-mean Inequality; Riemann-Liouville Fractional Integral;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present article, we establish an integral identity for Riemann-Liouville fractional integrals. Some Simpson type integral inequalities utilizing this integral identity are obtained. It is worth mentioning that the presented results have close connection with those in [M. Z Sarikaya, E. Set, M. E Ozdemir, On new inequalities of Simpson's type for s-convex functions, Computers and Mathematics with Applications, 60 (2010), 2191-2199)].
引用
收藏
页码:1137 / 1145
页数:9
相关论文
共 50 条
  • [41] Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities
    Sarikaya, Mehmet Zeki
    Set, Erhan
    Yaldiz, Hatice
    Basak, Nagihan
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2403 - 2407
  • [42] Fractional dual Simpson-type inequalities for differentiable s-convex functions
    Kamouche, Nesrine
    Ghomrani, Sarra
    Meftah, Badreddine
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (02): : 75 - 84
  • [43] Fractional Simpson-Type Inequalities for Twice Differentiable Functions
    Budak, Hueseyin
    Kara, Hasan
    Hezenci, Fatih
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 97 - 108
  • [44] A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions
    Hezenci, Fatih
    MATHEMATICA SLOVACA, 2023, 73 (03) : 675 - 686
  • [45] Hermite–Hadamard type inequalities for fractional integrals via Green’s function
    Muhammad Adil Khan
    Arshad Iqbal
    Muhammad Suleman
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2018
  • [46] On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals
    Hüseyin Budak
    Fatih Hezenci
    Hasan Kara
    Advances in Difference Equations, 2021
  • [47] On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals
    Budak, Huseyin
    Hezenci, Fatih
    Kara, Hasan
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [48] INEQUALITIES OF JENSEN'S TYPE FOR GENERALIZED k-g-FRACTIONAL INTEGRALS
    Dragomir, Silvestru Sever
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (03): : 257 - 276
  • [49] NEWTON'S-TYPE INTEGRAL INEQUALITIES VIA LOCAL FRACTIONAL INTEGRALS
    Iftikhar, Sabah
    Kumam, Poom
    Erden, Samet
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (03)
  • [50] On the Hadamard's type Inequalities for Convex Functions via Conformable Fractional Integrals
    Yildirim, M. E.
    Akkurt, A.
    Yildirim, H.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (03): : 1 - 10