A generating function technique for Beatty sequences and other step sequences

被引:14
|
作者
O'Bryant, K [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Beatty sequences; generating functions; Farey fractions; Lambert series; complementary sequences; Fraenkel's conjecture;
D O I
10.1006/jnth.2001.2743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g(x, n), with x is an element of R+, be a step function for each n, Assuming certain technical hypotheses, we give a constant a and function f such that Sigma(n=1)(infinity) g(x, n) can be written in the form alpha + Sigma(0<r<x) f(r), where the summation is extended over all points in (0, x) at which some g((.), n) is not continuous. A typical example is Sigma(n=1)(infinity) z([n/x]) = (1/z - 1) Sigma z(q)/(1 - z(q)), with the summation extending over all pairs p, q of positive integers satisfying 0 < p/q < x and gcd(p, q) = 1. We then apply such representations to prove identities such as zeta(z) = Sigma(n=1)(infinity) phi(n)/n(z) (zeta(z) - zeta(z, 1 + 1/n)), the Lambert series for Euler's totient function, and Sigma(n=0)(infinity) (-1)(n) sigma.(2n+1)/2n+1 = pi/4 z/1+z2, where zeta(z) and zeta(z, a) are the Riemann and Hurwitz zeta functions and sigma(z)(n) = Sigma(d\n) dz(d). We also give a generalization of the Rayleigh Beatty theorem and a new result of a similar nature for the sequences ([2nalpha] - [nalpha])(n=1)(infinity). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:299 / 319
页数:21
相关论文
共 50 条
  • [41] On the Convergence of Alternating Series Associated with Beatty Sequences
    A. V. Begunts
    [J]. Mathematical Notes, 2020, 107 : 345 - 349
  • [42] Some results for multivariate generating function of graphical sequences
    Yue, Hong
    Jin, Shiming
    [J]. Journal of Shanghai University, 1999, 5 (01): : 13 - 16
  • [43] Toroidalization of generating sequences in dimension two function fields
    Ghezzi, Laura
    Ha, Huy Tai
    Kashcheyeva, Olga
    [J]. JOURNAL OF ALGEBRA, 2006, 301 (02) : 838 - 866
  • [44] On the irrationality exponent of the generating function for a class of integer sequences
    Niu, Min
    L, Miaomiao, I
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 81 : 203 - 207
  • [45] Generating Functions for the Digital Sum and Other Digit Counting Sequences
    Adams-Watters, Franklin T.
    Ruskey, Frank
    [J]. JOURNAL OF INTEGER SEQUENCES, 2009, 12 (05)
  • [46] Generating sequences of functions
    Mitchell, J. D.
    Peresse, Y.
    Quick, M. R.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2007, 58 : 71 - 79
  • [47] GENERATING BENT SEQUENCES
    ADAMS, CM
    TAVARES, SE
    [J]. DISCRETE APPLIED MATHEMATICS, 1992, 39 (02) : 155 - 159
  • [48] Generating Huffman sequences
    Hoffman, D
    Johnson, P
    Wilson, N
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2005, 54 (01): : 115 - 121
  • [49] Sequences generating permutations
    Manev, Nikolai L.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (03) : 708 - 718
  • [50] Generating Prioritized Test Sequences Using Firefly Optimization Technique
    Panthi, Vikas
    Mohapatra, D. P.
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2, 2015, 32 : 627 - 635