Phase-field Simulation of Habit Plane Formation during Martensitic Transformation in Low-carbon Steels

被引:14
|
作者
Tsukada, Yuhki [1 ]
Kojima, Yasuhiro [2 ]
Koyama, Toshiyuki [1 ]
Murata, Yoshinori [3 ]
机构
[1] Nagoya Inst Technol, Dept Mat Sci & Engn, Grad Sch Engn, Nagoya, Aichi 4648603, Japan
[2] Nagoya Inst Technol, Dept Mat Sci & Engn, Grad Sch Engn, Showa Ku, Nagoya, Aichi 4668555, Japan
[3] Nagoya Inst Technol, Dept Mat Phys & Energy Engn, Grad Sch Engn, Showa Ku, Nagoya, Aichi 4648603, Japan
基金
日本学术振兴会;
关键词
phase-field model; martensitic transformation; low-carbon steels; dislocation; habit plane; LATH MARTENSITE; FE-C; MICROSTRUCTURE EVOLUTION; DISLOCATION DENSITY; ALLOY-STEELS; MODEL; CRYSTALLOGRAPHY; MORPHOLOGY; DEFORMATION; POLYCRYSTAL;
D O I
10.2355/isijinternational.ISIJINT-2015-039
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The origin of the habit plane of the martensite phase (alpha') in low-carbon steels is elucidated by three-dimensional phase-field simulations. The cubic -> tetragonal martensitic transformation and the evolution of dislocations with Burgers vector a(alpha)'/2 < 111 >alpha', in the evolving alpha' phase are modeled simultaneously. By assuming a static defect in the undercooled parent phase (gamma), we simulate the heterogeneous nucleation in the martensitic transformation. The transformation progresses with the formation of the stress-accommodating cluster composed of the three tetragonal domains of the alpha' phase. With the growth of the alpha' phase, the habit plane of the martensitic cluster emerges near the (111)(gamma) plane, whereas it is not observed in the simulation in which the slip in the alpha' phase is not considered. We observed that the formation of the (111)(gamma) habit plane, which is characteristic of the lath martensite that contains a high dislocation density, is attributable to the slip in the alpha' phase during the martensitic transformation.
引用
收藏
页码:2455 / 2462
页数:8
相关论文
共 50 条
  • [21] Deformation and Fracture of Low-Carbon Martensitic Steels
    Greben'kov, S. K.
    Skudnov, V. A.
    Shatsov, A. A.
    METAL SCIENCE AND HEAT TREATMENT, 2016, 58 (1-2) : 91 - 96
  • [22] Strain hardening of low-carbon martensitic steels
    Greben'kov, S. K.
    Shatsov, A. A.
    Larinin, D. M.
    Kleiner, L. M.
    PHYSICS OF METALS AND METALLOGRAPHY, 2013, 114 (10): : 868 - 876
  • [23] Structural heredity in low-carbon martensitic steels
    Yugai, SS
    Kleiner, LM
    Shatsov, AA
    Mitrokhovich, NN
    METAL SCIENCE AND HEAT TREATMENT, 2004, 46 (11-12) : 539 - 544
  • [24] NITRIDING STEELS OF THE LOW-CARBON MARTENSITIC TYPE
    LAKHTIN, YM
    IOFFE, GA
    TSYRLIN, ES
    KOGAN, LI
    ENTIN, RI
    METAL SCIENCE AND HEAT TREATMENT, 1980, 22 (3-4) : 167 - 171
  • [25] DIRECT MARTENSITIC TRANSFORMATIONS OF LOW-CARBON STEELS
    Belykh, D. G.
    Skoromna, S. F.
    Tkachenko, V. I.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2023, (02): : 37 - 41
  • [26] Structural heredity in low-carbon martensitic steels
    S. S. Yugai
    L. M. Kleiner
    A. A. Shatsov
    N. N. Mitrokhovich
    Metal Science and Heat Treatment, 2004, 46 : 539 - 544
  • [27] Structure and properties of low-carbon martensitic steels
    Kleiner, LM
    Simonov, YN
    METAL SCIENCE AND HEAT TREATMENT, 1999, 41 (7-8) : 366 - 368
  • [28] Structure and properties of low-carbon martensitic steels
    L. M. Kleiner
    Yu. N. Simonov
    Metal Science and Heat Treatment, 1999, 41 : 366 - 368
  • [29] Deformation and Fracture of Low-Carbon Martensitic Steels
    S. K. Greben’kov
    V. A. Skudnov
    A. A. Shatsov
    Metal Science and Heat Treatment, 2016, 58 : 91 - 96