Combinatorial optimization algorithm for permutation using multi-agents and reinforcement learning

被引:0
|
作者
Kobayashi, Y [1 ]
Aiyoshi, E [1 ]
机构
[1] Tepco Syst Corp, Minato Ku, Tokyo 1050004, Japan
关键词
multi-agents; reinforcement learning; combinatorial optimization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with combinatorial optimization of permutation type using multi-agents algorithm (MAA). In order to improve optimization capability, we introduced the reinforcement learning and several processes into this MAA. Optimization capability of this algorithm was compared in traveling salesman problem and it provided better optimization results than the conventional MAA and genetic algorithm.
引用
收藏
页码:2916 / 2920
页数:5
相关论文
共 50 条
  • [21] Learning Styles Multi-agents Simulation
    Juliana Hernandez, Emilcy
    Felipe Londono, Luis
    Giraldo, Mauricio
    Tabares, Valentina
    Dario Duque, Nestor
    [J]. ADVANCES IN PRACTICAL APPLICATIONS OF CYBER-PHYSICAL MULTI-AGENT SYSTEMS: THE PAAMS COLLECTION, PAAMS 2017, 2017, 10349 : 325 - 328
  • [22] Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization
    Beloborodov, Dmitrii
    Ulanov, A.E.
    Foerster, Jakob N.
    Whiteson, Shimon
    Lvovsky, A.I.
    [J]. Machine Learning: Science and Technology, 2021, 2 (02):
  • [23] Evolving multi-agents using a self-organizing genetic algorithm
    Jeong, IK
    Lee, JJ
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1997, 88 (2-3) : 293 - 303
  • [24] A Flocking Algorithm for Multi-agents in a Bounded Space
    Chen, Zhiyong
    Zhang, Hai-Tao
    Fan, Ming-Can
    [J]. 2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 7131 - 7135
  • [25] Reinforcement Learning for Multi-Neighborhood Local Search in Combinatorial Optimization
    Ceschia, Sara
    Di Gaspero, Luca
    Rosati, Roberto Maria
    Schaerf, Andrea
    [J]. MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT II, 2024, 14506 : 206 - 221
  • [26] Reinforcement learning for combinatorial optimization: A survey
    Mazyavkina, Nina
    Sviridov, Sergey
    Ivanov, Sergei
    Burnaev, Evgeny
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2021, 134
  • [27] Exploratory Combinatorial Optimization with Reinforcement Learning
    Barrett, Thomas D.
    Clements, William R.
    Foerster, Jakob N.
    Lvovsky, A., I
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3251 - 3258
  • [28] Distributed evaluation using multi-agents
    Özturk, V
    Sönmez, C
    Öztemel, E
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2005, PROCEEDINGS, 2005, 3733 : 312 - 321
  • [29] Multi-agents and learning: Implications for Webusage mining
    Lotfy, Hewayda M. S.
    Khamis, Soheir M. S.
    Aboghazalah, Maie M.
    [J]. JOURNAL OF ADVANCED RESEARCH, 2016, 7 (02) : 285 - 295
  • [30] A study on mathematical modeling for learning multi-agents
    Furukawa, Masashi
    Watanabe, Michiko
    Ohkura, Kazuhiro
    Kakazu, Yukinori
    [J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2003, 69 (02): : 200 - 204