Instantaneously complete Chern-Ricci flow and Kahler-Einstein metrics

被引:5
|
作者
Huang, Shaochuang [1 ]
Lee, Man-Chun [2 ]
Tam, Luen-Fai [3 ,4 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
[2] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
[3] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
REGULARIZING PROPERTIES; EXISTENCE; DEFORMATION; CONVERGENCE; CURVATURE; EQUATION;
D O I
10.1007/s00526-019-1612-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we obtain some existence results of Chern-Ricci Flows and the corresponding Potential Flows on complex manifolds with possibly incomplete initial data. We discuss the behaviour of the solution as t -> 0. These results can be viewed as a generalization of an existence result of Ricci flow by Giesen and Topping for surfaces of hyperbolic type to higher dimensions in certain sense. On the other hand, we also discuss the long time behaviour of the solution and obtain some sufficient conditions for the existence of Kahler-Einstein metric on complete non-compact Hermitian manifolds, which generalizes the work of Lott-Zhang and Tosatti-Weinkove to complete non-compact Hermitian manifolds with possibly unbounded curvature.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Instantaneously complete Chern–Ricci flow and Kähler–Einstein metrics
    Shaochuang Huang
    Man-Chun Lee
    Luen-Fai Tam
    [J]. Calculus of Variations and Partial Differential Equations, 2019, 58
  • [2] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [3] Ricci Iteration for Coupled Kahler-Einstein Metrics
    Takahashi, Ryosuke
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (20) : 15850 - 15872
  • [4] Ricci flow on Kahler-Einstein manifolds
    Chen, XX
    Tian, G
    [J]. DUKE MATHEMATICAL JOURNAL, 2006, 131 (01) : 17 - 73
  • [5] Ricci flow on Kahler-Einstein surfaces
    Chen, XX
    Tian, G
    [J]. INVENTIONES MATHEMATICAE, 2002, 147 (03) : 487 - 544
  • [6] RENORMALIZED CHERN-GAUSS-BONNET FORMULA FOR COMPLETE KAHLER-EINSTEIN METRICS
    Marugame, Taiji
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2016, 138 (04) : 1067 - 1094
  • [7] Degeneration of Kahler-Einstein metrics on complete Kahler manifolds
    Leung, CN
    Lu, P
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1999, 7 (02) : 431 - 449
  • [8] On the Kahler-Ricci flow near a Kahler-Einstein metric
    Sun, Song
    Wang, Yuanqi
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 699 : 143 - 158
  • [9] The Chern-Ricci flow
    Tosatti, Valentino
    Weinkove, Ben
    [J]. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2022, 33 (01): : 73 - 107
  • [10] Convergence of the Kahler-Ricci Flow on a Kahler-Einstein Fano Manifold
    Guedj, Vincent
    [J]. INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 299 - 333