Ricci flow on Kahler-Einstein manifolds

被引:43
|
作者
Chen, XX [1 ]
Tian, G
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1215/S0012-7094-05-13112-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the continuation of our earlier article [10]. For any Kahler-Einstein surfaces with positive scalar curvature, if the initial metric has positive bisectional curvature, then we have proved (see [10]) that the Kahler-Ricci flow converges exponentially to a unique Kahler-Einstein metric in the end. This partially answers a long-standing problem in Ricci flow: On a compact Kahler-Einstein manifold, does the Kahler-Ricci flow converge to a Kahler-Einstein metric if the initial metric has positive bisectional curvature? In this article we give a complete affirmative answer to this problem.
引用
收藏
页码:17 / 73
页数:57
相关论文
共 50 条
  • [1] KAHLER-RICCI FLOW ON PROJECTIVE BUNDLES OVER KAHLER-EINSTEIN MANIFOLDS
    Fong, Frederick Tsz-Ho
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (02) : 563 - 589
  • [2] Ricci flow on Kahler-Einstein surfaces
    Chen, XX
    Tian, G
    [J]. INVENTIONES MATHEMATICAE, 2002, 147 (03) : 487 - 544
  • [3] On the Kahler-Ricci flow near a Kahler-Einstein metric
    Sun, Song
    Wang, Yuanqi
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 699 : 143 - 158
  • [4] Moderate Degeneration of Kahler-Einstein Manifolds with Negative Ricci Curvature
    Takayama, Shigeharu
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2019, 55 (04) : 779 - 793
  • [5] Convergence of the Kahler-Ricci Flow on a Kahler-Einstein Fano Manifold
    Guedj, Vincent
    [J]. INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 299 - 333
  • [6] Complete Kahler-Einstein manifolds
    Kuehnel, Marco
    [J]. COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 171 - 181
  • [7] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [8] Kahler-Ricci flow, Kahler-Einstein metric, and K-stability
    Chen, Xiuxiong
    Sun, Song
    Wang, Bing
    [J]. GEOMETRY & TOPOLOGY, 2018, 22 (06) : 3145 - 3173
  • [9] REMARKS ON KAHLER-EINSTEIN MANIFOLDS
    MATSUSHIMA, Y
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1972, 46 (MAR) : 161 - +
  • [10] Kahler-Einstein metrics on Fano manifolds
    Tian, Gang
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2015, 10 (01): : 1 - 41