MINIMA IN BRANCHING RANDOM WALKS

被引:90
|
作者
Addario-Berry, Louigi [1 ]
Reed, Bruce [2 ,3 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] McGill Univ, Sch Comp Sci, Canada Res Chair, Montreal, PQ H3A 2A7, Canada
[3] INRIA, Equipe Mascotte, Labo 13S, Sophia Antipolis, France
来源
ANNALS OF PROBABILITY | 2009年 / 37卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
Branching random walks; branching processes; random trees; WEIGHTED HEIGHT; DISPLACEMENT; DEVIATIONS; POSITION;
D O I
10.1214/08-AOP428
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a branching random walk, let M-n be the minimum position of any member of the nth generation. We calculate EMn to within O(1) and prove exponential tail bounds for P{vertical bar M-n - EMn vertical bar > x}, under quite general conditions on the branching random walk. In particular, together with work by Bramson [Z. Wahrsch. Verw. Gebiete 45 (1978) 89-108], our results fully characterize the possible behavior of EMn when the branching random walk has bounded branching and step size.
引用
收藏
页码:1044 / 1079
页数:36
相关论文
共 50 条
  • [41] Branching random walks on free products of groups
    Candellero, Elisabetta
    Gilch, Lorenz A.
    Mueller, Sebastian
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 1085 - 1120
  • [42] Occupation densities of ensembles of branching random walks
    Lalley, Steven P.
    Tang, Si
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25
  • [43] The number of ends of critical branching random walks
    Candellero, Elisabetta
    Roberts, Matthew I.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (01): : 55 - 67
  • [44] Field Theory of Branching and Annihilating Random Walks
    Cardy, J. L.
    Taeuber, U. C.
    Journal of Statistical Physics, 90 (1-2):
  • [45] Anisotropic branching random walks on homogeneous trees
    Irene Hueter
    Steven P. Lalley
    Probability Theory and Related Fields, 2000, 116 : 57 - 88
  • [46] Simulation of Branching Random Walks on a Multidimensional Lattice
    Ermishkina E.M.
    Yarovaya E.B.
    Journal of Mathematical Sciences, 2021, 254 (4) : 469 - 484
  • [47] A note on branching random walks on finite sets
    Mountford, T
    Schinazi, RB
    JOURNAL OF APPLIED PROBABILITY, 2005, 42 (01) : 287 - 294
  • [48] ONE LIMIT THEOREM FOR BRANCHING RANDOM WALKS
    Smorodina, N., V
    Yarovaya, E. B.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2024, 68 (04) : 630 - 642
  • [49] Martingale method for studying branching random walks
    Smorodina, N. V.
    Yarovaya, E. B.
    RUSSIAN MATHEMATICAL SURVEYS, 2022, 77 (05) : 955 - 957
  • [50] On the maximal displacement of subcritical branching random walks
    Eyal Neuman
    Xinghua Zheng
    Probability Theory and Related Fields, 2017, 167 : 1137 - 1164