共 50 条
Directed Energy Transfer through DNA-Templated J-Aggregates
被引:18
|作者:
Mandal, Sarthak
[1
,4
]
Zhou, Xu
[2
,3
]
Lin, Su
[1
,3
]
Yan, Hao
[2
,3
]
Woodbury, Neal
[1
,3
]
机构:
[1] Arizona State Univ, Biodesign Inst, Ctr Innovat Med, Tempe, AZ 85287 USA
[2] Arizona State Univ, Biodesign Inst, Ctr Mol Design & Biomimet, Tempe, AZ 85287 USA
[3] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[4] Natl Inst Technol, Dept Chem, Tiruchirappalli 620015, Tamil Nadu, India
关键词:
METAL-ORGANIC FRAMEWORKS;
EXCITON DYNAMICS;
FLUORESCENCE;
COHERENCE;
D O I:
10.1021/acs.bioconjchem.9b00043
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Strongly coupled molecular dye aggregates have unique optoelectronic properties that often resemble those of light harvesting complexes found in Nature. The exciton dynamics in coupled dye aggregates could enhance the long-range transfer of optical excitation energy with high efficiency. In principle, dye aggregates could serve as important components in molecular-scale photonic devices; however, rational design of these coupled dye aggregates with precise control over their organization, interactions, and dynamics remains a challenge. DNA nanotechnology has recently been used to build an excitonic circuit by organizing pseudoisocyanine (PIC) dyes forming J-aggregates on the templates of poly(dA)-poly(dT) DNA duplexes. Here, the excitonic properties of the PIC J-aggregates on DNA are characterized spectroscopically in detail using poly(dA)-poly(dT) tract lengths of 24 and 48 base pairs. The excitonic properties of these DNA templated dye assemblies depend on the length and sequence of the DNA template. The incorporation of a gap of two GC base pairs between two segments of poly(dA)-poly(dT) DNA markedly reduces the delocalization of excitation in the J-aggregates. With a quantum dot (QD) as the light absorber and energy donor and using Alexa Fluor 647 (AF647) as the energy acceptor, with a DNA-templated J-aggregate in between, significant energy transfer from QD to AF647 is observed over a distance far longer than possible without the aggregate bridge. By comparing the efficiency of energy transfer through a continuous J-aggregate with the efficiency when the aggregate has a discontinuity in the middle, the effects of energy transfer within the aggregate bridge between the donor and acceptor are evaluated.
引用
收藏
页码:1870 / 1879
页数:10
相关论文