3D shape retrieval and classification using multiple kernel learning on extended Reeb graphs

被引:16
|
作者
Barra, Vincent [1 ,2 ,4 ]
Biasotti, Silvia [3 ,5 ]
机构
[1] Univ Blaise Pascal, Clermont Univ, LIMOS, F-63000 Clermont Ferrand, France
[2] CNRS, LIMOS, UMR 6158, F-63173 Aubiere, France
[3] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Genoa, Italy
[4] Univ Blaise Pascal, Clermont Univ, F-63000 Clermont Ferrand, France
[5] IMATI CNR, Pavia, Italy
来源
VISUAL COMPUTER | 2014年 / 30卷 / 11期
关键词
3D Object retrieval; Classification; Extended Reeb graph; Kernel learning; SEARCH;
D O I
10.1007/s00371-014-0926-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose in this article a new 3D shape classification and retrieval method, based on a supervised selection of the most significant features in a space of attributed extended Reeb graphs encoding different shape characteristics. The similarity between pairs of graphs is addressed through both their representation as set of bags of shortest paths, and the definition of kernels adapted to these descriptions. A multiple kernel learning algorithm is used on this set of kernels to find an optimal linear combination of kernels for classification and retrieval purposes. Results on classical data sets are comparable with the best results of the literature, and the modularity and flexibility of the kernel learning ensure its applicability to a large set of methods.
引用
收藏
页码:1247 / 1259
页数:13
相关论文
共 50 条
  • [21] Learning geometric complexes for 3D shape classification
    Kudeshia, Prachi
    Agowun, Muhammad Altaf
    Poovvancheri, Jiju
    COMPUTERS & GRAPHICS-UK, 2024, 125
  • [22] Reeb graph path dissimilarity for 3D object matching and retrieval
    Waleed Mohamed
    A. Ben Hamza
    The Visual Computer, 2012, 28 : 305 - 318
  • [23] Local information fusion network for 3D shape classification and retrieval
    Zhu, Feng
    Xu, Junyu
    Yao, Chuanming
    IMAGE AND VISION COMPUTING, 2022, 121
  • [24] DFNet: Deep Fusion Network for 3D Shape Classification and Retrieval
    Hu, Boni
    Leng, Pengyu
    Zhang, Xishan
    Han, Pengcheng
    Bu, Shuhui
    Chen, Lin
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6747 - 6752
  • [25] Reeb graph path dissimilarity for 3D object matching and retrieval
    Mohamed, Waleed
    Ben Hamza, A.
    VISUAL COMPUTER, 2012, 28 (03): : 305 - 318
  • [26] Using Bipartite Graphs for 3D Cardiac Model Retrieval
    Bergamasco, Leila C. C.
    Oliveira, Hellyan
    Biscaro, Helton
    Wechsler, Harry
    Nunes, Fatima L. S.
    2015 IEEE 28TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2015, : 232 - 237
  • [27] INTEGRATION OF 2D AND 3D FEATURES FROM UAV IMAGERY FOR INFORMAL SETTLEMENT CLASSIFICATION USING MULTIPLE KERNEL LEARNING
    Gevaert, Caroline
    Persello, Claudio
    Sliuzas, Richard
    Vosselman, George
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1508 - 1511
  • [28] Invariant high level reeb graphs of 3D polygonal meshes
    Tierny, Julien
    Vandeborre, Jean-Philippe
    Daoudi, Mohamed
    THIRD INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2007, : 105 - 112
  • [29] Differential 3D shape retrieval
    Matias Di Martino, J.
    Fernandez, Alicia
    Ayubi, Gaston A.
    Ferrari, Jose A.
    OPTICS AND LASERS IN ENGINEERING, 2014, 58 : 114 - 118
  • [30] 3D GAUSSIAN DESCRIPTOR FOR 3D SHAPE RETRIEVAL
    Chaouch, Mohamed
    Verroust-Blondet, Anne
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 834 - 837