The 2D continuum radiative transfer problem - Benchmark results for disk configurations

被引:111
|
作者
Pascucci, I
Wolf, S
Steinacker, J
Dullemond, CP
Henning, T
Niccolini, G
Woitke, P
Lopez, B
机构
[1] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[2] CALTECH, Pasadena, CA 91125 USA
[3] Inst Astrophys, D-07745 Jena, Germany
[4] Univ Sternwarte, D-07745 Jena, Germany
[5] Max Planck Inst Astrophys, D-85741 Garching, Germany
[6] Observ Cote Azur, Dept Fresnel, UMR 6528, F-06034 Nice 4, France
[7] Tech Univ Berlin, Zentrum Astron & Astrophys, D-10623 Berlin, Germany
来源
ASTRONOMY & ASTROPHYSICS | 2004年 / 417卷 / 03期
关键词
radiative transfer; stars : circumstellar matter; methods : numerical;
D O I
10.1051/0004-6361:20040017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present benchmark problems and solutions for the continuum radiative transfer (RT) in a 2D disk configuration. The reliability of three Monte-Carlo and two grid-based codes is tested by comparing their results for a set of well-defined cases which differ for optical depth and viewing angle. For all the configurations, the overall shape of the resulting temperature and spectral energy distribution is well reproduced. The solutions we provide can be used for the verification of other RT codes. We also point out the advantages and disadvantages of the various numerical techniques applied to solve the RT problem.
引用
收藏
页码:793 / 805
页数:13
相关论文
共 50 条
  • [31] A 1D radiative transfer benchmark with polarization via doubling and adding
    Ganapol, B. D.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 201 : 236 - 250
  • [32] CONTINUUM RADIATIVE TRANSFER MODELING OF SAGITTARIUS B2
    Schmiedeke, A.
    Schilke, P.
    Moeller, Th.
    Sanchez-Monge, A.
    Bergin, E.
    Comito, C.
    Csengeri, T.
    Lis, D. C.
    Molinari, S.
    Qin, S. L.
    Rolffs, R.
    6TH ZERMATT ISM-SYMPOSIUM: CONDITIONS AND IMPACT OF STAR FORMATION: FROM LAB TO SPACE: IN MEMORY OF CHARLES H. TOWNES, 2016, 75-76 : 171 - +
  • [33] 3D continuum radiative transfer in complex dust configurations -: II.: 3D structure of the dense molecular cloud core ρ Oph D
    Steinacker, J
    Bacmann, A
    Henning, T
    Klessen, R
    Stickel, M
    ASTRONOMY & ASTROPHYSICS, 2005, 434 (01) : 167 - 180
  • [34] Radiative heat transfer in 2D Dirac materials (vol 27, 214019, 2015)
    Rodriguez-Lopez, Pablo
    Tse, Wang-Kong
    Dalvit, Diego A. R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (44)
  • [35] On 2D radiative transfer in solar granulation. The case of Fe I lines
    M. I. Stodilka
    Astrophysics and Space Science, 2008, 318 : 93 - 102
  • [36] On 2D radiative transfer in solar granulation. The case of Fe I lines
    Stodilka, M. I.
    ASTROPHYSICS AND SPACE SCIENCE, 2008, 318 (1-2) : 93 - 102
  • [37] Radiative and convective heat transfer in 2D and 3D voids in potential flow analysis
    Fellinger, JHH
    Both, K
    FINITE ELEMENTS IN ENGINEERING AND SCIENCE, 1997, : 495 - 504
  • [38] Radiative transfer in cylindrical threads with incident radiation - V. 2D transfer with 3D velocity fields
    Gouttebroze, P.
    ASTRONOMY & ASTROPHYSICS, 2008, 487 (03) : 805 - 813
  • [39] Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem
    Jansson, Johan
    Degirmenci, Niyazi Cem
    Hoffman, Johan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2017, 33 (09)
  • [40] Analytical Results for Size-Topology Correlations in 2D Disk and Cellular Packings
    Miklius, Matthew P.
    Hilgenfeldt, Sascha
    PHYSICAL REVIEW LETTERS, 2012, 108 (01)